Introduction to Simulation Methods,

Michelle Sovinsky Goeree

University of Zuerich

October 17, 2011

Outline

Generating Random Variables

- Simulation of Integrals
- Variance Reduction
- Simulation in Estimation

- Simulation methods can be used for demand estimation, option pricing, risk , econometrics, etc.
- Naive Monte Carlo may be too slow in some practical situations.
- Many special techniques for variance reduction: antithetic variables, importance sampling, etc.

- Simulation methods can be used for demand estimation, option pricing, risk , econometrics, etc.
- Naive Monte Carlo may be too slow in some practical situations.
- Many special techniques for variance reduction: antithetic variables, importance sampling, etc.

- Simulation methods can be used for demand estimation, option pricing, risk , econometrics, etc.
- Naive Monte Carlo may be too slow in some practical situations.
- Many special techniques for variance reduction: antithetic variables, importance sampling, etc.

The Basics

Consider the basic problem of computing an expectation

$$\theta = E[f(X)], \qquad X \sim pdf(X)$$

Monte Carlo simulation approach specifies generating N independent draws from the distribution pdf(X), X₁, X₂, ..., X_N, and approximating

$$E[f(X)] \approx \widehat{\theta}_N \equiv \frac{1}{N} \sum_{i=1}^N f(X_i)$$

▶ By Law of Large Numbers, the approximation $\hat{\theta}_N$ converges to the true value as N increases to infinity.

The Basics

Consider the basic problem of computing an expectation

$$\theta = E[f(X)], \qquad X \sim pdf(X)$$

Monte Carlo simulation approach specifies generating N independent draws from the distribution pdf(X), X₁, X₂, ..., X_N, and approximating

$$E[f(X)] \approx \widehat{\theta}_N \equiv \frac{1}{N} \sum_{i=1}^N f(X_i)$$

▶ By Law of Large Numbers, the approximation $\hat{\theta}_N$ converges to the true value as N increases to infinity.

The Basics

Consider the basic problem of computing an expectation

$$\theta = E[f(X)], \qquad X \sim pdf(X)$$

Monte Carlo simulation approach specifies generating N independent draws from the distribution pdf(X), X₁, X₂, ..., X_N, and approximating

$$E[f(X)] \approx \widehat{\theta}_N \equiv \frac{1}{N} \sum_{i=1}^N f(X_i)$$

▶ By Law of Large Numbers, the approximation $\hat{\theta}_N$ converges to the true value as N increases to infinity.

The Basics

• Monte Carlo estimate $\hat{\theta}_N$ is unbiased:

$$E[\widehat{\theta}_N] = \theta$$

▶ By Central Limit Theorem

$$\sqrt{N} \frac{\widehat{\theta}_N - \theta}{\sigma} \Rightarrow N(0, 1), \sigma^2 = Var[f(X)]$$

The Basics

• Monte Carlo estimate $\hat{\theta}_N$ is unbiased:

$$E[\widehat{\theta}_N] = \theta$$

► By Central Limit Theorem

$$\sqrt{N} \frac{\widehat{\theta}_N - \theta}{\sigma} \Rightarrow N(0, 1), \sigma^2 = Var[f(X)]$$

- Pseudo random number generators produce deterministic sequences of numbers that appear stochastic, and match closely the desired probability distribution.
- For some standard distributions, e.g., uniform and Normal, MATLAB® provides built-in random number generators.
- Sometimes it is necessary to simulate from other distributions, not covered by the standard software.
- Then apply one of the basic methods for generating random variables from a specified distribution.

- Pseudo random number generators produce deterministic sequences of numbers that appear stochastic, and match closely the desired probability distribution.
- For some standard distributions, e.g., uniform and Normal, MATLAB® provides built-in random number generators.
- Sometimes it is necessary to simulate from other distributions, not covered by the standard software.
- Then apply one of the basic methods for generating random variables from a specified distribution.

- Pseudo random number generators produce deterministic sequences of numbers that appear stochastic, and match closely the desired probability distribution.
- For some standard distributions, e.g., uniform and Normal, MATLAB® provides built-in random number generators.
- Sometimes it is necessary to simulate from other distributions, not covered by the standard software.
- Then apply one of the basic methods for generating random variables from a specified distribution.

The Inverse Transform Method

- Consider a random variable X with a continuous, strictly increasing CDF function F(x).
- We can simulate X according to

$$X = F^{-1}(U), \qquad U \sim Unif[0,1]$$

This works because

 $\Pr(X \le x) = \Pr(F^{-1}(U) \le x) = \Pr(U \le F(x)) = F(x)$

• If F(x) has jumps or flat sections, generalize the above rule to

$$X = \min(x : F(x) \ge U)$$

The Inverse Transform Method

- Consider a random variable X with a continuous, strictly increasing CDF function F(x).
- We can simulate X according to

$$X = F^{-1}(U), \qquad U \sim Unif[0,1]$$

This works because

 $\Pr(X \le x) = \Pr(F^{-1}(U) \le x) = \Pr(U \le F(x)) = F(x)$

• If F(x) has jumps or flat sections, generalize the above rule to

$$X = \min(x : F(x) \ge U)$$

The Inverse Transform Method

- Consider a random variable X with a continuous, strictly increasing CDF function F(x).
- We can simulate X according to

$$X = F^{-1}(U), \qquad U \sim Unif[0,1]$$

This works because

$$\Pr(X \le x) = \Pr(F^{-1}(U) \le x) = \Pr(U \le F(x)) = F(x)$$

• If F(x) has jumps or flat sections, generalize the above rule to

$$X = \min(x : F(x) \ge U)$$

The Inverse Transform Method

- Consider a random variable X with a continuous, strictly increasing CDF function F(x).
- We can simulate X according to

$$X = F^{-1}(U), \qquad U \sim Unif[0,1]$$

This works because

$$\Pr(X \le x) = \Pr(F^{-1}(U) \le x) = \Pr(U \le F(x)) = F(x)$$

• If F(x) has jumps or flat sections, generalize the above rule to

$$X = \min(x : F(x) \ge U)$$

Example: The Exponential Distribution

 Consider an exponentially-distributed random variable, characterized by a CDF

$$F(x) = U = 1 - e^{-x\theta}$$

• Compute $F^{-1}(U)$

$$e^{-x\theta} = 1 - U \Rightarrow \ln(1 - U) = -x\theta$$

► So

$$X = \frac{-\ln(1-U)}{\theta} \sim \frac{-\ln(U)}{\theta}$$

Example: The Exponential Distribution

 Consider an exponentially-distributed random variable, characterized by a CDF

$$F(x) = U = 1 - e^{-x\theta}$$

• Compute $F^{-1}(U)$

$$e^{-x\theta} = 1 - U \Rightarrow \ln(1 - U) = -x\theta$$

So

$$X = \frac{-\ln(1-U)}{\theta} \sim \frac{-\ln(U)}{\theta}$$

Example: Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

$$F(x) = U = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$\sigma\Phi^{-1}(U) + \mu = X \sim N(\mu, \sigma^2)$$

Example: Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

$$F(x) = U = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
$$\sigma\Phi^{-1}(U) + \mu = X \sim N(\mu, \sigma^2)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

Example: Discrete Distribution

Consider a discrete random variable X with values

$$c_1 < c_2 < \cdots < c_n$$

$$\Pr(X=c_i)=p$$

Define cummulative proababilities

$$F(c_i) = q_i = \sum_{i=1}^N p_i$$

Can simulate X as follows:

- 1. Generate $U \sim Unif[0,1]$
- 2. Find $K \in \{1, ..., n\}$ such that $q_{K-1} \leq U \leq q_K$
- 3. Set $X = c_K$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example: Discrete Distribution

Consider a discrete random variable X with values

$$c_1 < c_2 < \cdots < c_n$$

$$\Pr(X=c_i)=p$$

Define cummulative proababilities

$$F(c_i) = q_i = \sum_{i=1}^N p_i$$

- Can simulate X as follows:
 - 1. Generate $U \sim Unif[0,1]$
 - 2. Find $K \in \{1, ..., n\}$ such that $q_{K-1} \leq U \leq q_K$
 - 3. Set $X = c_K$

Example: Discrete Distribution

Consider a discrete random variable X with values

$$c_1 < c_2 < \cdots < c_n$$

$$\Pr(X=c_i)=p$$

Define cummulative proababilities

$$F(c_i) = q_i = \sum_{i=1}^N p_i$$

- Can simulate X as follows:
 - 1. Generate $U \sim Unif[0, 1]$
 - 2. Find $K \in \{1, ..., n\}$ such that $q_{K-1} \leq U \leq q_K$
 - 3. Set $X = c_K$

Examples

▶ Bernouli where X = 1 with probability p and 0 with probability 1 − p

$$X = 1(U < p)$$

Binomial

 $X \sim Bin(N, p)$

$$X = F^{-1}(U)$$

 $X = \sum^{N} \mathbb{1}(U_i < p)$

Examples

1.

▶ Bernouli where X = 1 with probability p and 0 with probability 1 − p

$$X = 1(U < p)$$

Binomial

 $X \sim Bin(N, p)$

 $X = F^{-1}(U)$

 $X = \sum_{i=1}^{N} \mathbb{1}(U_i < p)$

Examples

▶ Bernouli where X = 1 with probability p and 0 with probability 1 − p

$$X = 1(U < p)$$

Binomial

 $X \sim Bin(N, p)$

 $X = F^{-1}(U)$

2.

1.

$$X = \sum_{i=1}^{N} \mathbb{1}(U_i < p)$$

Examples

▶ Bernouli where X = 1 with probability p and 0 with probability 1 − p

$$X = 1(U < p)$$

Binomial

 $X \sim Bin(N, p)$

 $X = F^{-1}(U)$

2.

1.

$$X = \sum_{i=1}^{N} \mathbb{1}(U_i < p)$$

Introduction to Simulation Methods,

Generating Random Variables

Examples

Chi-Square

 $X \sim \chi_p^2$

 $X = F^{-1}(U)$

1.

 $X = \sum_{i=1}^{N} [\Phi^{-1}(U)]^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction to Simulation Methods,

Generating Random Variables

Examples

Chi-Square

 $X \sim \chi_n^2$

 $X = F^{-1}(U)$

2.

1.

$$X = \sum_{i=1}^{N} [\Phi^{-1}(U)]^2$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

The Acceptance-Rejection Method

- Generate samples with probability density f(x)
- The acceptance-rejection method can be used for multivariate problems as well
- Suppose we know how to generate samples from the distribution with pdf g(x) such that f(x) ≤ cg(x)
- Follow the algorithm
- 1. Generate X from the distribution g(x)
- 2. Generate U from Unif [0,1]
- 3. If $U \leq f(x)/[cg(X)]$, return X, otherwise go to step 1
- Probability of acceptance on each attempt is 1/c. Want c close to 1

The Acceptance-Rejection Method

- Generate samples with probability density f(x)
- The acceptance-rejection method can be used for multivariate problems as well
- Suppose we know how to generate samples from the distribution with pdf g(x) such that f(x) ≤ cg(x)
- Follow the algorithm
- 1. Generate X from the distribution g(x)
- 2. Generate U from Unif[0,1]
- 3. If $U \leq f(x)/[cg(X)]$, return X, otherwise go to step 1
- Probability of acceptance on each attempt is 1/c. Want c close to 1

The Acceptance-Rejection Method

- Generate samples with probability density f(x)
- The acceptance-rejection method can be used for multivariate problems as well
- Suppose we know how to generate samples from the distribution with pdf g(x) such that f(x) ≤ cg(x)
- Follow the algorithm
- 1. Generate X from the distribution g(x)
- 2. Generate U from Unif [0, 1]
- 3. If $U \leq f(x)/[cg(X)]$, return X, otherwise go to step 1
- Probability of acceptance on each attempt is 1/c. Want c close to 1

Example: Truncated Random Variables

 $X \sim F : a < X < b$

1. Acceptance-Rejection

$$X = F^{-1}(U)$$

Keep if a < X < b otherwise tray again

2.

$$U = \frac{F(X) - F(a)}{F(b) - F(a)}$$
$$F^{-1}\{[F(b) - F(a)]U + F(a)\} = X$$

Example: Truncated Random Variables

$$X \sim F$$
 : $a < X < b$

1. Acceptance-Rejection

$$X = F^{-1}(U)$$

Keep if a < X < b otherwise tray again

 $U = \frac{F(X) - F(a)}{F(b) - F(a)}$ = -1{[F(b) - F(a)]U + F(a)} = .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: Truncated Random Variables

$$X \sim F$$
 : $a < X < b$

1. Acceptance-Rejection

$$X = F^{-1}(U)$$

Keep if a < X < b otherwise tray again

2.

$$U = \frac{F(X) - F(a)}{F(b) - F(a)}$$
$$F^{-1}\{[F(b) - F(a)]U + F(a)\} = X$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
Simulation of Integrals

Example: Truncated Random Variables

Consider the problem of computing

$$Eh(U)=\int h(u)dF(u)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Moments in 'Method of Moments' Estimation

Probabilities in discrete choice models

Simulation of Integrals

Example: Truncated Random Variables

Consider the problem of computing

$$Eh(U) = \int h(u) dF(u)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Moments in 'Method of Moments' Estimation
- Probabilities in discrete choice models

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Prototypical Example

$$y_{ij}^* = X_i \beta_j + u_{ij}$$

 $u_i \sim iidF$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Prototypical Example

$$egin{array}{rcl} y_{ij}^{*} &=& X_{i}eta_{j}+u_{ij}\ u_{i} &\sim& iidF \end{array}$$

u_{ij} ~ *iidEV* ⇒ Multinomial Logit w/ benefits and disadvantages

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Prototypical Example

$$egin{array}{rcl} y_{ij}^{*} &=& X_{i}eta_{j}+u_{ij}\ u_{i} &\sim& iidF \end{array}$$

- *u_{ij}* ~ *iidEV* ⇒ Multinomial Logit w/ benefits and disadvantages
- *u_i* ~ *iidN* (0, Ω) ⇒ Multinomial Probit w/ benefits and disadvantages

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Prototypical Example

$$egin{array}{rcl} y_{ij}^{*} &=& X_{i}eta_{j}+u_{ij}\ u_{i} &\sim& iidF \end{array}$$

- *u_{ij}* ~ *iidEV* ⇒ Multinomial Logit w/ benefits and disadvantages
- *u_i* ~ *iidN* (0, Ω) ⇒ Multinomial Probit w/ benefits and disadvantages

$$U \sim N(\mu, \Omega)$$

 $\Pr[U < v]$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$Z = \frac{1}{R} \sum_{r=1}^{R} h(u^{r})$$
$$u^{r} \sim F$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

$$EZ = E\left[\frac{1}{R}\sum_{r=1}^{R}h\left(u^{r}\right)\right]$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$EZ = E\left[\frac{1}{R}\sum_{r=1}^{R}h(u^{r})\right]$$
$$= \frac{1}{R}\sum_{r=1}^{R}Eh(u^{r})$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

$$EZ = E\left[\frac{1}{R}\sum_{r=1}^{R}h(u^{r})\right]$$
$$= \frac{1}{R}\sum_{r=1}^{R}Eh(u^{r})$$
$$= \frac{1}{R}\sum_{r=1}^{R}Eh(U) = Eh(U)$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$V$$
ar $Z = V$ ar $\left[rac{1}{R}\sum_{r=1}^{R}h\left(u^{r}
ight)
ight]$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

$$egin{aligned} & extsf{VarZ} = extsf{Var}\left[rac{1}{R}\sum_{r=1}^{R}h\left(u^{r}
ight)
ight] \ &= rac{1}{R^{2}}\sum_{r=1}^{R} extsf{Var}\left[h\left(u^{r}
ight)
ight] \end{aligned}$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$\begin{aligned} & \textit{VarZ} = \textit{Var}\left[\frac{1}{R}\sum_{r=1}^{R}h\left(u^{r}\right)\right] \\ &= \frac{1}{R^{2}}\sum_{r=1}^{R}\textit{Var}\left[h\left(u^{r}\right)\right] \\ &= \frac{1}{R^{2}}\sum_{r=1}^{R}\textit{Var}\left[h\left(U\right)\right] = \frac{\textit{Var}\left[h\left(U\right)\right]}{R} \end{aligned}$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Basic Method for Multivariate Normal Probability

 $X \sim N(\mu, \Omega)$ $\Pr[X < v]$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Basic Method for Multivariate Normal Probability

$$X \sim N(\mu, \Omega)$$

 $\Pr[X < \nu]$

$$h(X) = 1(X < v)$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Basic Method for Multivariate Normal Probability

$$X \sim N(\mu, \Omega)$$

 $\Pr[X < v]$

$$h(X) = 1(X < v)$$

$$Eh(X) = \int \mathbb{1}(x < v) \, d\Phi(x; \mu, \Omega)$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Basic Method for Multivariate Normal Probability

$$X \sim N(\mu, \Omega)$$

 $\Pr[X < v]$

$$h(X) = 1(X < v)$$

$$Eh(X) = \int \mathbb{1}(x < v) \, d\Phi(x; \mu, \Omega)$$

Frequency Method (Lerman & Manski)

$$Z = \frac{1}{R} \sum_{r=1}^{R} \mathbb{1} (x^r < v)$$
$$x^r \sim iidN(\mu, \Omega)$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation ir Estimation

1 Not continuous in v

Problems w Frequency Method

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Problems w Frequency Method

1 Not continuous in v

2 Not bounded away from zero and one [problems for MLE]

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation ir Estimation

Other Topics

Problems w Frequency Method

1 Not continuous in v

- 2 Not bounded away from zero and one [problems for MLE]
- **3** Unnecessarily large variance

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Importance Sampling

 $Eh(U) = \int h(u) f(u) du$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int h(u) f(u) du$$

$$= \int \frac{h(u) f(u)}{g(u)} g(u) du$$
$$= E_g \left[\frac{h(U) f(U)}{g(U)} \right]$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int h(u) f(u) du$$

$$= \int \frac{h(u) f(u)}{g(u)} g(u) du$$
$$= E_g \left[\frac{h(U) f(U)}{g(U)} \right]$$

Properties of a Good Importance Sampler

1 Support of G = support of F

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int h(u) f(u) du$$

$$= \int \frac{h(u) f(u)}{g(u)} g(u) du$$
$$= E_g \left[\frac{h(U) f(U)}{g(U)} \right]$$

Properties of a Good Importance Sampler

- **1** Support of G = support of F
- **2** Easy to simulate from G

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int h(u) f(u) du$$

$$= \int \frac{h(u) f(u)}{g(u)} g(u) du$$
$$= E_g \left[\frac{h(U) f(U)}{g(U)} \right]$$

Properties of a Good Importance Sampler

- **1** Support of G = support of F
- **2** Easy to simulate from G
- 3 $\frac{h(U)f(U)}{g(U)}$ does not vary as much as h(U)

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int 1(u < v) f(u) du$$
$$= \int_{u < v} f(u) du$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int 1(u < v) f(u) du$$
$$= \int_{u < v} f(u) du$$

Let G be independent truncated normals

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int 1(u < v) f(u) du$$
$$= \int_{u < v} f(u) du$$

Let ${\it G}$ be independent truncated normals

1 Support of G = support of F

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int 1(u < v) f(u) du$$
$$= \int_{u < v} f(u) du$$

Let G be independent truncated normals

1 Support of
$$G =$$
 support of F

2 Easy to simulate from G

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Importance Sampling

$$Eh(U) = \int 1(u < v) f(u) du$$
$$= \int_{u < v} f(u) du$$

Let G be independent truncated normals

1 Support of
$$G =$$
 support of F

$$\frac{h(U)f(U)}{g(U)}$$
 is unbounded

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

1 Initialize P = 1

Algorithm

2 Compute $\Pr(U_1 < v_1)$, and update $P = P * \Pr(U_1 < v_1)$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

1 Initialize P = 1

Algorithm

2 Compute $Pr(U_1 < v_1)$, and update $P = P * Pr(U_1 < v_1)$ 3 Simulate $U_1^r | U_1^r < v_1$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

Algorithm Initialize P = 1

- 2 Compute $Pr(U_1 < v_1)$, and update $P = P * Pr(U_1 < v_1)$
- **3** Simulate $U_1^r \mid U_1^r < v_1$
- 4 Initialize i = 1
- **5** Update $i \Leftarrow i + 1$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

Algorithm

- 1 Initialize P = 1
- **2** Compute $Pr(U_1 < v_1)$, and update $P = P * Pr(U_1 < v_1)$
- **3** Simulate $U_1^r \mid U_1^r < v_1$
- Initialize i = 1
- **5** Update $i \Leftarrow i + 1$
- 6 Compute density of $U_i \mid U_1^r, U_2^r, ..., U_{i-1}^r$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

Algorithm

- 1 Initialize P = 1
- **2** Compute $\Pr(U_1 < v_1)$, and update $P = P * \Pr(U_1 < v_1)$
- **3** Simulate $U_1^r \mid U_1^r < v_1$
- Initialize i = 1
- **5** Update $i \Leftarrow i + 1$
- 6 Compute density of $U_i \mid U_1^r, U_2^r, ..., U_{i-1}^r$
- **?** Compute $\Pr(U_i < v_i | U_1^r, U_2^r, ..., U_{i-1}^r)$, and update $P = P * \Pr(U_i < v_i | U_1^r, U_2^r, ..., U_{i-1}^r)$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

Algorithm

- 1 Initialize P = 1
- **2** Compute $\Pr(U_1 < v_1)$, and update $P = P * \Pr(U_1 < v_1)$
- **3** Simulate $U_1^r \mid U_1^r < v_1$
- Initialize i = 1
- **5** Update $i \Leftarrow i + 1$
- 6 Compute density of $U_i \mid U_1^r, U_2^r, ..., U_{i-1}^r$
- **?** Compute $\Pr(U_i < v_i | U_1^r, U_2^r, ..., U_{i-1}^r)$, and update $P = P * \Pr(U_i < v_i | U_1^r, U_2^r, ..., U_{i-1}^r)$

8 Return to (5) until done
Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

1 Support of G = support of F

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

1 Support of G = support of F

2 Easy to simulate from G

Improvements GHK

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements GHK

- **1** Support of G = support of F
- 2 Easy to simulate from G
- Simulator is bounded away from zero and one, and variance is smaller than frequency simulator

-Variance Reduction

Anithetic Acceleration

- Attempt to reduce variance due to simulation
- Introduce negative dependence between pairs of replications

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Antithetic Acceleration

Let $U \sim U(0,1)$, and consider as a simulator for Eh(U),

$$S = \frac{1}{2R} \sum_{r=1}^{2R} h(u^r)$$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Antithetic Acceleration

Let $U \sim U(0,1)$, and consider as a simulator for Eh(U),

$$S = \frac{1}{2R} \sum_{r=1}^{2R} h(u^r)$$

$$AS = \frac{1}{2R} \sum_{r=1}^{2R} \left[h(u^{r}) + h(1 - u^{r}) \right]$$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Antithetic Acceleration

Let $U \sim U(0,1)$, and consider as a simulator for Eh(U),

$$S = \frac{1}{2R} \sum_{r=1}^{2R} h(u^r)$$

$$AS = \frac{1}{2R} \sum_{r=1}^{2R} \left[h(u^{r}) + h(1 - u^{r}) \right]$$

$$E(AS) = \frac{1}{2R} \sum_{r=1}^{2R} [Eh(u^{r}) + Eh(1 - u^{r})]$$

= $\frac{1}{2R} \sum_{r=1}^{2R} [Eh(U) + Eh(1 - U)]$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

Antithetic Acceleration

Let $U \sim U(0,1)$, and consider as a simulator for Eh(U),

$$S = \frac{1}{2R} \sum_{r=1}^{2R} h(u^r)$$

Ε

$$AS = \frac{1}{2R} \sum_{r=1}^{2R} \left[h(u^{r}) + h(1 - u^{r}) \right]$$

$$(AS) = \frac{1}{2R} \sum_{r=1}^{2R} [Eh(u^{r}) + Eh(1 - u^{r})]$$
$$= \frac{1}{2R} \sum_{r=1}^{2R} [Eh(U) + Eh(1 - U)]$$

$$=\frac{1}{2R}\sum_{r=1}^{2R}\left[Eh(U)+Eh(U)\right]=Eh(U)$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

$$Var(AS) = \frac{1}{4R^2} \sum_{r=1}^{2R} Var[h(u^r) + h(1 - u^r)]$$

= $\frac{1}{4R^2} \sum_{r=1}^{2R} [Var(h(u^r)) + Var(h(1 - u^r)))$
+ $2Cov(h(u^r), h(1 - u^r))]$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

$$Var(AS) = \frac{1}{4R^2} \sum_{r=1}^{2R} Var[h(u^r) + h(1 - u^r)]$$

= $\frac{1}{4R^2} \sum_{r=1}^{2R} [Var(h(u^r)) + Var(h(1 - u^r)))$
+ $2Cov(h(u^r), h(1 - u^r))]$

$$= \frac{1}{4R^2} \sum_{r=1}^{2R} \left[Var(h(U)) + Var(h(1-U)) + 2Cov(h(U), h(1-U)) \right]$$

$$= \frac{1}{2R} \sum_{r=1}^{2R} \left[Var(h(U)) + Cov(h(U), h(1-U)) \right]$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

$$Var\left(AS
ight)=rac{1}{2R}\sum_{r=1}^{2R}\left[Var\left(h\left(U
ight)
ight)+Cov\left(h\left(U
ight),h\left(1-U
ight)
ight)
ight]$$

• If
$$Cov(h(U), h(1-U)) = 0$$
, then $Var(AS) = Var(S)$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Improvements

$$Var\left(AS
ight)=rac{1}{2R}\sum_{r=1}^{2R}\left[Var\left(h\left(U
ight)
ight)+Cov\left(h\left(U
ight),h\left(1-U
ight)
ight)
ight]$$

- If Cov(h(U), h(1-U)) = 0, then Var(AS) = Var(S)
- If Cov(h(U), h(1-U)) < 0, then Var(AS) < Var(S)

Improvements

Antithetic Acceleration

$$Var\left(AS
ight)=rac{1}{2R}\sum_{r=1}^{2R}\left[Var\left(h\left(U
ight)
ight)+Cov\left(h\left(U
ight),h\left(1-U
ight)
ight)
ight]$$

- If Cov(h(U), h(1-U)) = 0, then Var(AS) = Var(S)
- If Cov(h(U), h(1-U)) < 0, then Var(AS) < Var(S)[A sufficient condition is $h(\cdot)$ is monotone]

Methods Steven Stern

Simulation

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Improvements

Antithetic Acceleration

$$Var\left(AS
ight)=rac{1}{2R}\sum_{r=1}^{2R}\left[Var\left(h\left(U
ight)
ight)+Cov\left(h\left(U
ight),h\left(1-U
ight)
ight)
ight]$$

- If Cov(h(U), h(1-U)) = 0, then Var(AS) = Var(S)
- If Cov(h(U), h(1-U)) < 0, then Var(AS) < Var(S)[A sufficient condition is $h(\cdot)$ is monotone]
- If Cov(h(U), h(1-U)) > 0, then Var(AS) > Var(S)

Simulation Methods Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation i Estimation

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Many estimation problems can be framed as

$$\frac{1}{n}\sum_{i=1}^{n}Z'_{i}e_{i}\left(\widehat{\theta}_{MOM}\right) = 0$$
$$e_{i}\left(\theta\right) = y_{i} - E\left[y_{i} \mid X_{i}, \theta\right]$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Many estimation problems can be framed as

$$\frac{1}{n}\sum_{i=1}^{n}Z'_{i}e_{i}\left(\widehat{\theta}_{MOM}\right) = 0$$
$$e_{i}\left(\theta\right) = y_{i}-E\left[y_{i}\mid X_{i},\theta\right]$$

MSM

Sometimes it is difficult to evaluate $E[y_i | X_i, \theta]$ while it is not difficult to simulate $E[y_i | X_i, \theta]$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Many estimation problems can be framed as

$$\frac{1}{n}\sum_{i=1}^{n}Z'_{i}e_{i}\left(\widehat{\theta}_{MOM}\right) = 0$$
$$e_{i}\left(\theta\right) = y_{i} - E\left[y_{i} \mid X_{i}, \theta\right]$$

MSM

Sometimes it is difficult to evaluate $E[y_i | X_i, \theta]$ while it is not difficult to simulate $E[y_i | X_i, \theta]$

$$\frac{1}{n}\sum_{i=1}^{n}Z'_{i}e_{i}\left(\widehat{\theta}_{MSM}\right) = 0$$
$$e_{i}\left(\theta\right) = y_{i}-\widetilde{E}\left[y_{i} \mid X_{i},\theta\right]$$

where $\widetilde{E}[y_i \mid X_i, \theta]$ is an unbiased simulator of $E[y_i \mid X_i, \theta]$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$\widetilde{e}_{i}(\theta) = e_{i}(\theta) + \xi_{i}$$

 $E\xi_{i} = 0$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$\widetilde{e}_{i}(\theta) = e_{i}(\theta) + \xi_{i}$$

 $E\xi_{i} = 0$

$$plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\widetilde{e}_{i}\left(\theta\right)\right] = plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\left(e_{i}\left(\theta\right) + \xi_{i}\right)\right]$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$\begin{split} \widetilde{e}_{i}\left(\theta\right) &= e_{i}\left(\theta\right) + \xi_{i} \\ E\xi_{i} &= 0 \end{split}$$

$$plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\widetilde{e}_{i}\left(\theta\right)\right] = plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\left(e_{i}\left(\theta\right) + \xi_{i}\right)\right]$$
$$= plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}e_{i}\left(\theta\right) + \frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\xi_{i}\right]$$

Steven Stern

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$\widetilde{e}_{i}(\theta) = e_{i}(\theta) + \xi_{i}$$

 $E\xi_{i} = 0$

$$plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\widetilde{e}_{i}\left(\theta\right)\right] = plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\left(e_{i}\left(\theta\right) + \xi_{i}\right)\right]$$
$$= plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}e_{i}\left(\theta\right) + \frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}\xi_{i}\right]$$
$$= plim\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{'}e_{i}\left(\theta\right)\right]$$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

• Loss in efficiency depends on properties of ξ_i

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

- Loss in efficiency depends on properties of ξ_i
- In worst case, $Var\left(\xi_{i}
 ight)=rac{1}{R}Var\left(e_{i}
 ight)$

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

- Loss in efficiency depends on properties of ξ_i
- In worst case, $Var\left(\xi_{i}
 ight)=rac{1}{R}Var\left(e_{i}
 ight)$
- If e_i (·) is monotone and one uses antithetic acceleration, the the variance due to simulation is O (¹/_n)

MSM

Simulation Methods

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

- Loss in efficiency depends on properties of ξ_i
- In worst case, $Var\left(\xi_{i}
 ight)=rac{1}{R}Var\left(e_{i}
 ight)$
- If e_i (·) is monotone and one uses antithetic acceleration, the the variance due to simulation is O (¹/_n)
- Note that MSM relies only on using an unbiased simulator

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$L(\theta) = \sum_{i=1}^{n} \log L_i(\theta)$$

MSL

• In some problems (e.g., MNP), while we cannot evaluate $L_i(\theta)$ easily because it involves high-dimensional integrals, we can simulate it easily.

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

$$L\left(heta
ight)=\sum_{i=1}^{n}\log L_{i}\left(heta
ight)$$

MSL

- In some problems (e.g., MNP), while we cannot evaluate $L_i(\theta)$ easily because it involves high-dimensional integrals, we can simulate it easily.
- However, even if the simulator of $L_i(\theta)$ is unbiased, the simulator of log $L_i(\theta)$ may have bad properties

$$L\left(heta
ight) = \sum_{i=1}^{n} \log L_{i}\left(heta
ight)$$

- In some problems (e.g., MNP), while we cannot evaluate $L_i(\theta)$ easily because it involves high-dimensional integrals, we can simulate it easily.
- However, even if the simulator of L_i (θ) is unbiased, the simulator of log L_i (θ) may have bad properties(eg. MNP with frequency simulator)

Simulation Methods

Steven Stern

Roadmap

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

$$L\left(heta
ight) = \sum_{i=1}^{n} \log L_{i}\left(heta
ight)$$

- In some problems (e.g., MNP), while we cannot evaluate $L_i(\theta)$ easily because it involves high-dimensional integrals, we can simulate it easily.
- However, even if the simulator of L_i (θ) is unbiased, the simulator of log L_i (θ) may have bad properties(eg. MNP with frequency simulator)
- Consistency requires that $R \to \infty$ as $n \to \infty$

Simulation Methods

Steven Stern

Simulation in Estimation

34 / 35

$$L(\theta) = \sum_{i=1}^{n} \log L_i(\theta)$$

- In some problems (e.g., MNP), while we cannot evaluate $L_i(\theta)$ easily because it involves high-dimensional integrals, we can simulate it easily.
- However, even if the simulator of L_i (θ) is unbiased, the simulator of log L_i (θ) may have bad properties(eg. MNP with frequency simulator)
- Consistency requires that $R \to \infty$ as $n \to \infty$ [compare to MSM]
- Borsch-Supan and Hajivassiliou showed, using Monte Carlo methods, that MSL has small asymptotic bias and, in fact, usually behaves better than MSM as long as one uses a simulator with good properties (eg, GHK)

Simulating Integrals

Simulation Methods

Steven Stern

Simulation in Estimation

$$L\left(heta
ight) = \sum_{i=1}^{n} \log L_{i}\left(heta
ight)$$

- In some problems (e.g., MNP), while we cannot evaluate $L_i(\theta)$ easily because it involves high-dimensional integrals, we can simulate it easily.
- However, even if the simulator of L_i (θ) is unbiased, the simulator of log L_i (θ) may have bad properties(eg. MNP with frequency simulator)
- Consistency requires that $R \to \infty$ as $n \to \infty$ [compare to MSM]
- Borsch-Supan and Hajivassiliou showed, using Monte Carlo methods, that MSL has small asymptotic bias and, in fact, usually behaves better than MSM as long as one uses a simulator with good properties (eg, GHK)
- Antithetic acceleration result

Steven Stern

Simulation Methods

Roadmap

Simulation of Random Variables

Simulating Integrals

Simulation in Estimation

Other Topics

Roadmap

Simulation Methods

Steven Stern

Simulation o Random Variables

Simulating Integrals

Simulation in Estimation

- MSS
- MCMC Methods
- Monte Carlo tests
- Parametric Bootstraps
- Distributions of Test Statistics
- Simulation inside of expected values (eg, value function approximation)