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» Simulation methods can be used for demand estimation,
option pricing, risk , econometrics, etc.

> Naive Monte Carlo may be too slow in some practical
situations.

» Many special techniques for variance reduction: antithetic
variables, importance sampling, etc.
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The Basics

» Consider the basic problem of computing an expectation

0 =E[f(X), X~ pdf(X)

» Monte Carlo simulation approach specifies generating N
independent draws from the distribution
pdf (X), X1, Xz, ..., Xy, and approximating

N
E[f(X)] ~ Oy = — Z

» By Law of Large Numbers, the approximation :9\,\/ converges to
the true value as N increases to infinity.
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The Basics

» Monte Carlo estimate @N is unbiased:

E[on] = 6

» By Central Limit Theorem
VNB=2 = N(0,1),02 = Var[f(X)]
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LGenerating Random Variables

» Pseudo random number generators produce deterministic
sequences of numbers that appear stochastic, and match
closely the desired probability distribution.

» For some standard distributions, e.g., uniform and Normal,
MATLABQ®) provides built-in random number generators.

» Sometimes it is necessary to simulate from other distributions,
not covered by the standard software.

» Then apply one of the basic methods for generating random
variables from a specified distribution.
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The Inverse Transform Method

» Consider a random variable X with a continuous, strictly
increasing CDF function F(x).

» We can simulate X according to

X =F V), U ~ Unif[0,1]

» This works because

Pr(X < x) = Pr(F7Y(U) < x) = Pr(U < F(x)) = F(x)

» If F(x) has jumps or flat sections, generalize the above rule to

X =min(x: F(x) > U)
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LGenerating Random Variables

Example: The Exponential Distribution

» Consider an exponentially-distributed random variable,
characterized by a CDF
Fx)=U=1—e>
» Compute F~1(U)

e =1-U=1In(1-U)=—xb

e n1=U) —In(U)
—In(1 - —In
X = ~
0 7
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Example: Normal Distribution

X ~ N(p,0?)

F(x)zuzcb(X;“)

o®HU) + p = X ~ N(u,0°)
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Example: Discrete Distribution

» Consider a discrete random variable X with values

<< <y
Pr(X=c)=p

» Define cummulative proababilities

)=gq;= Zp,

» Can simulate X as follows:
1. Generate U ~ Unif|0, 1]
2. Find K € {1, ...,n} such that gx_1 < U < gk
3. Set X = ¢k



Introduction to Simulation Methods,
LGenerating Random Variables

Examples

» Bernouli where X =1 with probability p and 0 with
probability 1 — p
X =1(U < p)

» Binomial



Introduction to Simulation Methods,
LGenerating Random Variables

Examples

» Bernouli where X =1 with probability p and 0 with
probability 1 — p
X =1(U < p)

» Binomial

X ~ Bin(N, p)

X =F1(U)



Introduction to Simulation Methods,
LGenerating Random Variables

Examples

» Bernouli where X =1 with probability p and 0 with
probability 1 — p

X =1(U < p)
> Binomial
X ~ Bin(N, p)
1.
X =F (V)
2.



Introduction to Simulation Methods,
LGenerating Random Variables

Examples

» Bernouli where X =1 with probability p and 0 with
probability 1 — p

X =1(U < p)
> Binomial
X ~ Bin(N, p)
1.
X =F (V)
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LGenerating Random Variables

Examples
» Chi-Square
X~
1.
X =FY(U)
2.
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LGenerating Random Variables
The Acceptance-Rejection Method

» Generate samples with probability density f(x)

» The acceptance-rejection method can be used for multivariate
problems as well

» Suppose we know how to generate samples from the
distribution with pdf g(x) such that f(x) < cg(x)

> Follow the algorithm

1. Generate X from the distribution g(x)
2. Generate U from Unif|0, 1]
3. If U < f(x)/[cg(X)], return X, otherwise go to step 1

» Probability of acceptance on each attempt is 1/c. Want ¢
close to 1
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LGenerating Random Variables

Example: Truncated Random Variables

X~F:a<X<b

1. Acceptance-Rejection

X = FY(U)
Keep if a < X < b otherwise tray again
F(X) — F(a)
F(b) — F(a)
F~H{[F(b) — F(a)]U + F(a)} = X

U=
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L Simulation of Integrals

Example: Truncated Random Variables

» Consider the problem of computing
Eh(U) = / h(u)dF (u)

» Moments in '"Method of Moments' Estimation

» Probabilities in discrete choice models



Prototypical Example

uj ~ iidF

13/35



Simulation

Methods .
Steven Stern Prototypical Example
Simulating u; ~U ”dF
Integrals

e ujj ~ iidEV = Multinomial Logit w/ benefits and
disadvantages

13 /35



Simulation
Methods

Steven Stern Prototypical Example

* — . ..
yU - Xlﬁj + ujj
Simulating u; ~U ”dF

Integrals

e ujj ~ iidEV = Multinomial Logit w/ benefits and
disadvantages

e u; ~ iidN (0, Q) = Multinomial Probit w/ benefits and
disadvantages



Simulation
Methods

Steven Stern

Yij

Simulating uj
Integrals

Prototypical Example

= Xiﬁj"“”ij
~ jidF

e ujj ~ iidEV = Multinomial Logit w/ benefits and

disadvantages

e u; ~ iidN (0, Q) = Multinomial Probit w/ benefits and

disadvantages

U

~ N(uQ)

Pr{U < v]
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|Snitmezlraatlisng VarZ = Var | — i h (Ur)]
r=1
1 R
== ; Var [h(u")]
B R B Var [h(U)]
= Y Var[h(U)] = R

16
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Simulating
Integrals

Basic Method for Multivariate
Normal Probability

X ~ N(pQ)
Pr[X < v]

h(X)=1(X < v)

Eh (X) :/1(x< V) d (x; 1, Q)
Frequency Method (Lerman & Manski)
R
Z x" < v)
r=1
dN (p, Q)

:o \

17 /35
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Steven Stern Problems w Frequency Method

Simulating
Integrals

® Not continuous in v
® Not bounded away from zero and one [problems for MLE]

© Unnecessarily large variance

18 /35
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g (u)

o[
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Importance Sampling

Eh(U):/h(u)f(u)du

Simulating
Integrals

_ [P
_/ g (u) gu)d

Properties of a Good Importance Sampler

@ Support of G = support of F

@® Easy to simulate from G

(3] h(:(){j()u) does not vary as much as h (V)

19/35
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Importance Sampling

Eh(U) = /1(u< V) f (u) du

= /u<vf(u)du

Let G be independent truncated normals

@ Support of G = support of F

® Easy to simulate from G

(3] % is unbounded

20 /35
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Improvements

Algorithm
@ Initialize P =1

GHK

® Compute Pr(U; < vi), and update P = P« Pr (U1 < v1)

©® Simulate U] | U] < v
O Initialize i =1
® Update i <= i+1

® Compute density of U; | U7, U5, .., U

@ Compute Pr (U,- <v | U, U5, . U

1

P = P*Pr(U,- < ‘ U, U;, ... U4

)

), and update
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Algorithm
inegrals @ Initialize P = 1

® Compute Pr(U; < vi), and update P = P« Pr (U1 < v1)
©® Simulate U] | U] < v

O Initialize i =1

@O Update i <= i+1

® Compute density of U; | U7, U5, .., U

@ Compute Pr (U; < v; | Uf, U3, .., U_), and update

1

1
P=PxPr (U,' <V ‘ Ulr, U2r, oo Uir,l)
® Return to (5) until done

22/35
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Simulating
Integrals

Improvements
GHK

@ Support of G = support of F
@® Easy to simulate from G

© Simulator is bounded away from zero and one, and
variance is smaller than frequency simulator

35



Introduction to Simulation Methods,
L Variance Reduction

Anithetic Acceleration

> Attempt to reduce variance due to simulation

» Introduce negative dependence between pairs of replications
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Antithetic Acceleration

Let U ~ U (0,1), and consider as a simulator for Eh (U),
1 2R

Simulating E h

Integrals

Now compare it to

1 2R . .
45 = 3 L [h(w) (1= 0)
E (AS L ¥~ Eh(u" Eh(1 r
(AS) = o LB+ En(1 =)
1 2R
= o5 L [EN(U) + ER(1- V)]

*
Il
_

:o"“
HM;,

U) + Eh(U)] = Eh (V)
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Antithetic Acceleration

1 2R
W;Var[h(u’)—i—h(l—u’)]

1 2R ) )
W;[Var(h(u )+ Var (h(1—1u"))

+2Cov (h(u"), h(1—u"))]
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Improvements

Antithetic Acceleration

1 2R
Var (AS) = 152 ; Var [h(u")+h(1—u")]

1 2R , ,
- W;[Var(h(u )) + Var (h(1—u"))

+2Cov (h(u"), h(1—u"))]

2R
_ % Y [Var (h(U)) + Var (h (1 — U))
r=1
+2Cov (h(U), h(1—U))]
1 2R
= ﬁr:1[Var(h(U))—i—Cov(h(U)vh(l_U))]

29 /35
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Simulating
Integrals

2R

Var (AS) = % ) [Var (h(U)) + Cov (h(U) (1~ U))]

~

e If Cov(h(U),h(1—U))=0, then Var (AS) = Var (S)
e If Cov(h(U),h(1—U)) <0, then Var (AS) < Var (S)
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e If Cov(h(U),h(1—U))=0, then Var (AS) = Var (S)
e If Cov(h(U),h(1—U)) <0, then Var (AS) < Var (S)
[A sufficient condition is h(-) is monotone]
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Integrals

Improvements

Antithetic Acceleration

1 2R
Var (AS) —R; [Var (h(U)) + Cov (h(U),h(1-U))]

e If Cov(h(U),h(1—U))=0, then Var (AS) = Var (S)

e If Cov(h(U),h(1—U)) <0, then Var (AS) < Var (S)
[A sufficient condition is h(-) is monotone]

e If Cov(h(U),h(1—U)) >0, then Var (AS) > Var (S)

30/35
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Simulation in
Estimation

MSM

Many estimation problems can be framed as
1& 0 /-
=Y. Zie <9MOM> =0
ni=
e(0) = yi—Elyi| X6

Sometimes it is difficult to evaluate E [y; | Xj, 8] while it is not
difficult to simulate E [y; | X, 6]

iilzfe; (5/\45/\4) =0

e(0) = yi—Elyi|X.0]

where E [y; | X;, 0] is an unbiased simulator of E [y; | X;, 6]

31/35
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Simulation in
Estimation

14 14
plim [n ,221 Z& (9)] = plim [n ,221 Z; (e (0)+¢;)
]. n / /
= p/’m [ ZZiei (0) + = Zzlgl
i=1 i=1
= plim | =) Zle; (9)]
i=1
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e Loss in efficiency depends on properties of ¢;

e In worst case, Var (¢;)

=1
— R

Var (&)
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e Loss in efficiency depends on properties of ¢;

o In worst case, Var (&;) = £ Var (&)

e If e (-) is monotone and one uses antithetic acceleration,
the the variance due to simulation is O (%)
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Simulation in
Estimation

MSM

Loss in efficiency depends on properties of ¢;
_ 1
In worst case, Var (§;) = % Var (e;)
If e (-) is monotone and one uses antithetic acceleration,
the the variance due to simulation is O (%)

Note that MSM relies only on using an unbiased simulator

35
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L(6) = élog L (6)

MSL

e In some problems (e.g., MNP), while we cannot evaluate
L; (0) easily because it involves high-dimensional integrals,

we can simulate it easily.
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Estimation

MSL

L©O) =Y logL, (0)
=1

e In some problems (e.g., MNP), while we cannot evaluate
L; (0) easily because it involves high-dimensional integrals,
we can simulate it easily.

e However, even if the simulator of L; (9) is unbiased, the
simulator of log L; (6) may have bad properties(eg. MNP
with frequency simulator)
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Other Topics

Other Topics

MSS

MCMC Methods

Monte Carlo tests

Parametric Bootstraps
Distributions of Test Statistics

Simulation inside of expected values (eg, value function
approximation)
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