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Generating Random Variables

The Basics

I Consider the basic problem of computing an expectation

θ = E [f (X )], X ∼ pdf (X )

I Monte Carlo simulation approach specifies generating N
independent draws from the distribution
pdf (X ),X1,X2, ...,XN , and approximating

E [f (X )] ≈ θ̂N ≡
1

N

N∑
i=1

f (Xi )

I By Law of Large Numbers, the approximation θ̂N converges to
the true value as N increases to infinity.



Introduction to Simulation Methods,

Generating Random Variables

The Basics

I Consider the basic problem of computing an expectation

θ = E [f (X )], X ∼ pdf (X )

I Monte Carlo simulation approach specifies generating N
independent draws from the distribution
pdf (X ),X1,X2, ...,XN , and approximating

E [f (X )] ≈ θ̂N ≡
1

N

N∑
i=1

f (Xi )

I By Law of Large Numbers, the approximation θ̂N converges to
the true value as N increases to infinity.



Introduction to Simulation Methods,

Generating Random Variables

The Basics

I Consider the basic problem of computing an expectation

θ = E [f (X )], X ∼ pdf (X )

I Monte Carlo simulation approach specifies generating N
independent draws from the distribution
pdf (X ),X1,X2, ...,XN , and approximating

E [f (X )] ≈ θ̂N ≡
1

N

N∑
i=1

f (Xi )

I By Law of Large Numbers, the approximation θ̂N converges to
the true value as N increases to infinity.



Introduction to Simulation Methods,

Generating Random Variables

The Basics

I Monte Carlo estimate θ̂N is unbiased:

E [θ̂N ] = θ

I By Central Limit Theorem√
N θ̂N−θ

σ ⇒ N(0, 1), σ2 = Var [f (X )]



Introduction to Simulation Methods,

Generating Random Variables

The Basics

I Monte Carlo estimate θ̂N is unbiased:

E [θ̂N ] = θ

I By Central Limit Theorem√
N θ̂N−θ

σ ⇒ N(0, 1), σ2 = Var [f (X )]



Introduction to Simulation Methods,

Generating Random Variables

I Pseudo random number generators produce deterministic
sequences of numbers that appear stochastic, and match
closely the desired probability distribution.

I For some standard distributions, e.g., uniform and Normal,
MATLAB R© provides built-in random number generators.

I Sometimes it is necessary to simulate from other distributions,
not covered by the standard software.

I Then apply one of the basic methods for generating random
variables from a specified distribution.
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The Inverse Transform Method

I Consider a random variable X with a continuous, strictly
increasing CDF function F (x).

I We can simulate X according to

X = F−1(U), U ∼ Unif [0, 1]

I This works because

Pr(X ≤ x) = Pr(F−1(U) ≤ x) = Pr(U ≤ F (x)) = F (x)

I If F (x) has jumps or flat sections, generalize the above rule to

X = min(x : F (x) ≥ U)
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Example: The Exponential Distribution

I Consider an exponentially-distributed random variable,
characterized by a CDF

F (x) = U = 1− e−xθ

I Compute F−1(U)

e−xθ = 1− U ⇒ ln(1− U) = −xθ

I So

X =
− ln(1− U)

θ
∼ − ln(U)

θ
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Generating Random Variables

Example: Discrete Distribution
I Consider a discrete random variable X with values

c1 < c2 < · · · < cn

Pr(X = ci ) = p

I Define cummulative proababilities

F (ci ) = qi =
N∑
i=1

pi

I Can simulate X as follows:
1. Generate U ∼ Unif [0, 1]
2. Find K ∈ {1, ..., n} such that qK−1 ≤ U ≤ qK
3. Set X = cK
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I Bernouli where X = 1 with probability p and 0 with

probability 1− p
X = 1(U < p)

I Binomial

X ∼ Bin(N, p)

1.
X = F−1(U)

2.

X =
N∑
i=1

1(Ui < p)
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X =
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[Φ−1(U)]2
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Generating Random Variables

The Acceptance-Rejection Method

I Generate samples with probability density f (x)

I The acceptance-rejection method can be used for multivariate
problems as well

I Suppose we know how to generate samples from the
distribution with pdf g(x) such that f (x) ≤ cg(x)

I Follow the algorithm

1. Generate X from the distribution g(x)

2. Generate U from Unif [0, 1]

3. If U ≤ f (x)/[cg(X )], return X , otherwise go to step 1

I Probability of acceptance on each attempt is 1/c . Want c
close to 1
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Example: Truncated Random Variables

X ∼ F : a < X < b

1. Acceptance-Rejection

X = F−1(U)

Keep if a < X < b otherwise tray again

2.

U =
F (X )− F (a)

F (b)− F (a)

F−1{[F (b)− F (a)]U + F (a)} = X
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I Consider the problem of computing

Eh(U) =

∫
h(u)dF (u)

I Moments in ’Method of Moments’ Estimation

I Probabilities in discrete choice models
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Prototypical Example

y �ij = Xi βj + uij
ui � iidF

� uij � iidEV ) Multinomial Logit w/ bene�ts and
disadvantages

� ui � iidN (0,Ω)) Multinomial Probit w/ bene�ts and
disadvantages

U � N (µ,Ω)
Pr [U < v ]
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1 Not continuous in v

2 Not bounded away from zero and one [problems for MLE]

3 Unnecessarily large variance
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Importance Sampling

Eh (U) =
Z
h (u) f (u) du

=
Z h (u) f (u)

g (u)
g (u) du

= Eg

�
h (U) f (U)
g (U)

�

Properties of a Good Importance Sampler

1 Support of G = support of F

2 Easy to simulate from G

3
h(U )f (U )
g (U ) does not vary as much as h (U)

19 / 35
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Algorithm

1 Initialize P = 1

2 Compute Pr (U1 < v1), and update P = P � Pr (U1 < v1)

3 Simulate U r1 j U r1 < v1
4 Initialize i = 1

5 Update i ( i + 1

6 Compute density of Ui j U r1 ,U r2 , ..,U ri�1
7 Compute Pr

�
Ui < vi j U r1 ,U r2 , ..,U ri�1

�
, and update

P = P � Pr
�
Ui < vi j U r1 ,U r2 , ..,U ri�1

�
8 Return to (5) until done
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1 Support of G = support of F

2 Easy to simulate from G

3 Simulator is bounded away from zero and one, and
variance is smaller than frequency simulator

� Intuition based on properties of conditional normal
densities [WRONG!!]

� Right way to think about GHK is as importance sampler
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Introduction to Simulation Methods,

Variance Reduction

Anithetic Acceleration

I Attempt to reduce variance due to simulation

I Introduce negative dependence between pairs of replications
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Let U � U (0, 1), and consider as a simulator for Eh (U),

S =
1
2R

2R

∑
r=1

h (ur )

Now compare it to

AS =
1
2R

2R

∑
r=1
[h (ur ) + h (1� ur )]

E (AS) =
1
2R

2R

∑
r=1
[Eh (ur ) + Eh (1� ur )]

=
1
2R

2R

∑
r=1
[Eh (U) + Eh (1� U)]

=
1
2R

2R

∑
r=1
[Eh (U) + Eh (U)] = Eh (U)
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Var (AS) =
1
4R2

2R

∑
r=1

Var [h (ur ) + h (1� ur )]

=
1
4R2

2R

∑
r=1
[Var (h (ur )) + Var (h (1� ur ))

+2Cov (h (ur ) , h (1� ur ))]

=
1
4R2

2R

∑
r=1
[Var (h (U)) + Var (h (1� U))

+2Cov (h (U) , h (1� U))]

=
1
2R

2R

∑
r=1
[Var (h (U)) + Cov (h (U) , h (1� U))]
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Var (AS) =
1
2R

2R

∑
r=1
[Var (h (U)) + Cov (h (U) , h (1� U))]

� If Cov (h (U) , h (1� U)) = 0, then Var (AS) = Var (S)

� If Cov (h (U) , h (1� U)) < 0, then Var (AS) < Var (S)
[A su¢ cient condition is h (�) is monotone]

� If Cov (h (U) , h (1� U)) > 0, then Var (AS) > Var (S)
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Many estimation problems can be framed as

1
n

n

∑
i=1
Z
0
i ei
�bθMOM� = 0

ei (θ) = yi � E [yi j Xi , θ]

Sometimes it is di¢ cult to evaluate E [yi j Xi , θ] while it is not
di¢ cult to simulate E [yi j Xi , θ]

1
n

n

∑
i=1
Z
0
i ei
�bθMSM� = 0

ei (θ) = yi � eE [yi j Xi , θ]
where eE [yi j Xi , θ] is an unbiased simulator of E [yi j Xi , θ]
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eei (θ) = ei (θ) + ξ i
Eξ i = 0

plim

"
1
n

n

∑
i=1
Z
0
i eei (θ)

#
= plim

"
1
n

n

∑
i=1
Z
0
i (ei (θ) + ξ i )

#

= plim

"
1
n

n

∑
i=1
Z
0
i ei (θ) +

1
n

n

∑
i=1
Z
0
i ξ i

#

= plim

"
1
n

n

∑
i=1
Z
0
i ei (θ)

#
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� Loss in e¢ ciency depends on properties of ξ i

� In worst case, Var (ξ i ) =
1
RVar (ei )

� If ei (�) is monotone and one uses antithetic acceleration,
the the variance due to simulation is O

� 1
n

�
� Note that MSM relies only on using an unbiased simulator
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L (θ) =
n

∑
i=1
log Li (θ)

� In some problems (e.g., MNP), while we cannot evaluate
Li (θ) easily because it involves high-dimensional integrals,
we can simulate it easily.

� However, even if the simulator of Li (θ) is unbiased, the
simulator of log Li (θ) may have bad properties(eg. MNP
with frequency simulator)

� Consistency requires that R ! ∞ as n! ∞[compare to
MSM]

� Borsch-Supan and Hajivassiliou showed, using Monte
Carlo methods, that MSL has small asymptotic bias and,
in fact, usually behaves better than MSM as long as one
uses a simulator with good properties (eg, GHK)

� Antithetic acceleration result

34 / 35



Simulation
Methods

Steven Stern

Roadmap

Simulation of
Random
Variables

Simulating
Integrals

Simulation in
Estimation

Other Topics

MSL

L (θ) =
n

∑
i=1
log Li (θ)

� In some problems (e.g., MNP), while we cannot evaluate
Li (θ) easily because it involves high-dimensional integrals,
we can simulate it easily.

� However, even if the simulator of Li (θ) is unbiased, the
simulator of log Li (θ) may have bad properties

(eg. MNP
with frequency simulator)

� Consistency requires that R ! ∞ as n! ∞[compare to
MSM]

� Borsch-Supan and Hajivassiliou showed, using Monte
Carlo methods, that MSL has small asymptotic bias and,
in fact, usually behaves better than MSM as long as one
uses a simulator with good properties (eg, GHK)

� Antithetic acceleration result

34 / 35



Simulation
Methods

Steven Stern

Roadmap

Simulation of
Random
Variables

Simulating
Integrals

Simulation in
Estimation

Other Topics

MSL

L (θ) =
n

∑
i=1
log Li (θ)

� In some problems (e.g., MNP), while we cannot evaluate
Li (θ) easily because it involves high-dimensional integrals,
we can simulate it easily.

� However, even if the simulator of Li (θ) is unbiased, the
simulator of log Li (θ) may have bad properties(eg. MNP
with frequency simulator)

� Consistency requires that R ! ∞ as n! ∞[compare to
MSM]

� Borsch-Supan and Hajivassiliou showed, using Monte
Carlo methods, that MSL has small asymptotic bias and,
in fact, usually behaves better than MSM as long as one
uses a simulator with good properties (eg, GHK)

� Antithetic acceleration result

34 / 35



Simulation
Methods

Steven Stern

Roadmap

Simulation of
Random
Variables

Simulating
Integrals

Simulation in
Estimation

Other Topics

MSL

L (θ) =
n

∑
i=1
log Li (θ)

� In some problems (e.g., MNP), while we cannot evaluate
Li (θ) easily because it involves high-dimensional integrals,
we can simulate it easily.

� However, even if the simulator of Li (θ) is unbiased, the
simulator of log Li (θ) may have bad properties(eg. MNP
with frequency simulator)

� Consistency requires that R ! ∞ as n! ∞

[compare to
MSM]

� Borsch-Supan and Hajivassiliou showed, using Monte
Carlo methods, that MSL has small asymptotic bias and,
in fact, usually behaves better than MSM as long as one
uses a simulator with good properties (eg, GHK)

� Antithetic acceleration result

34 / 35



Simulation
Methods

Steven Stern

Roadmap

Simulation of
Random
Variables

Simulating
Integrals

Simulation in
Estimation

Other Topics

MSL

L (θ) =
n

∑
i=1
log Li (θ)

� In some problems (e.g., MNP), while we cannot evaluate
Li (θ) easily because it involves high-dimensional integrals,
we can simulate it easily.

� However, even if the simulator of Li (θ) is unbiased, the
simulator of log Li (θ) may have bad properties(eg. MNP
with frequency simulator)

� Consistency requires that R ! ∞ as n! ∞[compare to
MSM]

� Borsch-Supan and Hajivassiliou showed, using Monte
Carlo methods, that MSL has small asymptotic bias and,
in fact, usually behaves better than MSM as long as one
uses a simulator with good properties (eg, GHK)

� Antithetic acceleration result

34 / 35



Simulation
Methods

Steven Stern

Roadmap

Simulation of
Random
Variables

Simulating
Integrals

Simulation in
Estimation

Other Topics

MSL

L (θ) =
n

∑
i=1
log Li (θ)

� In some problems (e.g., MNP), while we cannot evaluate
Li (θ) easily because it involves high-dimensional integrals,
we can simulate it easily.

� However, even if the simulator of Li (θ) is unbiased, the
simulator of log Li (θ) may have bad properties(eg. MNP
with frequency simulator)

� Consistency requires that R ! ∞ as n! ∞[compare to
MSM]

� Borsch-Supan and Hajivassiliou showed, using Monte
Carlo methods, that MSL has small asymptotic bias and,
in fact, usually behaves better than MSM as long as one
uses a simulator with good properties (eg, GHK)

� Antithetic acceleration result
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� MSS
� MCMC Methods
� Monte Carlo tests
� Parametric Bootstraps
� Distributions of Test Statistics
� Simulation inside of expected values (eg, value function
approximation)
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