Introduction	Institutional framework and identification strategy	Data	Results	Conclusior
000000	0000000	00	0000000	

School's out for summer, school's out forever: the long-term health consequences of leaving school in a bad economy

Clémentine Garrouste¹ Mathilde Godard^{1,2,3}

¹PSL, Paris-Dauphine University, LEDa-LEGOS ²CREST, ³École polytechnique

Journée de la Chaire Santé – 16 mars 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction •00000	Institutional framework and identification strategy	Data 00	Results 0000000	Conclusion
Motivation				
Motivati	ion			

- Growing literature on the consequences of early-life conditions on health (Banerjee and al. (2009); Van Den Berg et al. (2006))
 - Epidemics, famines, war episodes, state of the business cycle at birth (GDP variation, recession) etc.
- More generally, it relates to the life-course approach in epidemiology :
 - Focus on the long-term effects on health of physical and social exposures during gestations, childhood, adolescence, young adulthood and later adult life.
- We focus on a critical period in life : first entry on the labour market (after graduation).

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
Motivation		00	0000000	

Motivation

- Evidence that graduating in a bad economy negatively affects :
 - wages (Khan, 2010; Oreopoulos et al., 2012)
 - employment prospects (Stevens, 2007; Genda, 2010; Gaini et al., 2012)
 - inactivity patterns (Hershbein, 2012).
 - possibly job quality, job stress, working hours, job prestige, work expectations etc.
- Labour market outcomes are linked to health outcomes. Both theoretical and empirical evidence.
 - Income may improve health (Grossman, 1972);
 - job loss is associated with lower health, adverse health behaviours and higher mortality rates (Browning and Heinesen, 2012);
 - other job dimensions such as job stress, perceived job insecurity, harmful working conditions have been shown to deteriorate health (Caroli and Godard, 2014; Fisher and Sousa-Poza, 2009).

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
Motivation	000000	00	0000000	

Research question

- Does leaving school in a bad economy deteriorate health in the long-run?
- Cumulative effect or initial shock?
- Relevant question in the actual context :
 - where the Great recession has a disproportionate impact on youth.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 and young cohorts leaving school face historically high unemployment rates.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	
Literature and contribution				

Literature

- Recent and increasing interest in the health consequences of leaving school in a bad economy.
 - Maclean (2013) on the NLSY79.
 - Cutler et al. (2014) on Eurobarometer data.
 - Hessel and Avendano (2013) on SHARE.
- Recent papers focusing on specific outcomes : drinking behaviour, body weight and the probability of having an employer-provided insurance (Maclean 2014a,b,c) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Institutional framework and identification strategy	Data 00	Results 0000000	Conclusion
Literature and contrib	pution			
Our paper	r			

- We focus on low-educated individuals who represent a substantial share (50%) of pupils in the 1970s.
 - individuals born in 1958 and 1959 in England and Wales who left full-time education in their last year of compulsory schooling immediately after the 1973 oil crisis between 1974 and 1976.
- Our identification strategy ⇒ comparison on very similar individuals – born the same calendar year – whose school-leaving behaviour in worse economic conditions was exogeneously induced by compulsory schooling laws.
- **Data** \Rightarrow we use a repeated cross section of individuals over 1983-2001 from the General Household Survey (GHS).

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
00000	0000000	00	0000000	

Literature and contribution

Contribution to the literature

- Evidence in our data that pupils' decisions to leave school at compulsory age in 1974-1976 were not endogeneous to the contemporaneous economic conditions at labour-market entry

 unlike school-leavers during the 1980s and 1990s recessions.
- Country/state-specific cohort effects cannot possibly bias our results.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

- Life-course perspective (1983-2001 data)
- Focus on low-educated individuals

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	●000000	00	0000000	
Strategy				

- Identification strategy
 - Within a same birth cohort pupils born at the end of the calendar year are forced to leave school almost a year later than their luckier counterparts (born earlier in the year)- and thus face higher unemployment rates at labour market entry.
 - Consider two cohorts : the 1958 and 1959 cohorts.
 - Not a before/after comparison. The treatment is to leave school in *worse* conditions than otherwise similar pupils (born the same year).
 - Builds on two sources :
 - Within-cohort variation introduced by compulsory schooling laws (both entry and exit rules).
 - Sharp increase in unemployment rates after the 1973 oil crisis.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	000000	00	0000000	

Institutional framework

Compulsory schooling laws in England and Wales

Figure 1: Compulsory schooling rules by month-year of birth.

Birth year	Month of birth	School starting date	Allowed to leave school
(1)	(2)	(3)	(4)
1958	January	Sept. 1963	Easter 1974
1958	February	Sept. 1963	May/June 1974
1958	March	Sept. 1963	May/June 1974
1958	April	Sept. 1963	May/June 1974
1958	May	Sept. 1963	May/June 1974
1958	June	Sept. 1963	May/June 1974
1958	July	Sept. 1963	May/June 1974
1958	August	Sept. 1963	May/June 1974
1958	September	Sept. 1964	Easter 1975
1958	October	Sept. 1964	Easter 1975
1958	November	Sept. 1964	Easter 1975
1958	December	Sept. 1964	Easter 1975
1959	January	Sept. 1964	Easter 1975
1959	February to August	Sept. 1964	May/June 1975
1959	September to December	Sept. 1965	Easter 1976

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion	
000000	000000	00	0000000		
Institutional framework					

Unemployment rates over the 1973-1979 period

Figure 2: Unemployment rates for all individuals aged 16 (source: LFS)

Introduction 000000	Institutional framework and identification strategy $\circ \circ \circ \bullet \circ \circ \circ$	Data 00	Results 0000000	Conclusion
Empirical approach				

Model in the literature

- Following Galama et al. (2010), Grossman (1972, 2000) health is modeled as a stock that deteriorates over the lifespan. Time *t* is measured from the time an individual has completed her education and joined the labour force (i.e. at 16).
- Health is defined as :

$$H(t) = I_m(t)^{\alpha} + (1 - d(t))H(t - 1)$$
(1)

where health can be improved through investment in curative medical care $I_m(t)$ and deteriorates at d(t) which depends on healthy consumption $C_h(t)$ (e.g. healthy food, healthy neighborhood), unhealthy consumption $C_u(t)$ (e.g. smoking), job-related stress z(t) (working environnement) and investment in curative care $I_p(t)$ and on a vector of exogenous functions $\xi(t)$.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	
Empirical approach				

Figure 3: The evolution of health depending on the scenario.

Introduction 000000	Institutional framework and identification strategy	Data oo	Results 0000000	Conclusion
Empirical approach				
Our mod	el			

We use a repeated cross-section of individuals over 1983-2001 to estimate the following equation by OLS/probit, for men and women separately:

$$H_i = \alpha + \gamma T_i + BirthYear_i + InterviewYear_i + \epsilon_i$$
(2)

where T_i is a dummy variable taking value 1 if individual *i* is treated, i.e born between the 1st of September and the 31st of December and value 0 if non-treated, i.e born between the 1st of January and the 31st of August.

$$H_{i} = \alpha + \gamma T_{i} + BirthYear_{i} + f(BirthMonth_{i}) + InterviewYear_{i} + \epsilon_{i}$$
(3)

 $f(BirthMonth_i)$ is a quadratic function of age in months within a birth year. It is equal to $(12 - BirthMonth_i) + (12 - BirthMonth_i)^2$, where $BirthMonth_i$ denotes the month of birth of respondent *i* and varies from 1 to 12.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	000000	00	0000000	

Validity of the identification strategy

Endogeneous timing of school-leaving

Figure 4: Proportion of pupils leaving school at binding age (16); Growth in school-leaving unemployment rate

Reading: Growth in school-leaving unemployment rate faced by pupils belonging to the youngest school cohort (treated) – compared to pupils born the same year belonging to the previous school cohort (non-treated)

Introduction	Institutional framework and identification strategy	Data	Results
000000	0000000	•0	0000000

GHS, sample and variables

The General Household Survey (GHS)

- GHS: repeated annual cross-sectional survey of over 13,000 households in Great-Britain; ran from 1972-2011.
- Includes information on:
 - demographics including month-year of birth from 1983 to 2001, the survey waves that we use

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- education including the age at which the individual left full-time education, the highest qualification obtained.
- earnings
- health status, health care and health behaviours.
- A number of the GHS respondents left school immediately after the 1973 oil crisis.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	0.	0000000	
GHS, sample and vari	ables			

Our sample

- Consider individuals born in 1958 and 1959 who left full-time education as soon as they reached the minimum school leaving age i.e at age 16:
 - abstract from the 1972 increase in the school minimum leaving age.
 - these individuals leave school between Easter 1974 and Easter 1976.
- Focus on England and Wales.
- Outcomes of interest not collected consistently over the period – include all possible observations for each outcome to maximize sample size.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000 000	
Main results				

Health outcomes (1)

Table 1: The impact of leaving school in a bad economy on health status

Dep. variable		Poor healt	h	Long	gstanding il	Iness	Re	stricts activ	/ity
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
Men	-0.01 (0.03)	0.08 (0.08)	0.10 (0.09)	-0.01 (0.03)	-0.03 (0.07)	0.06 (0.08)	0.00 (0.02)	0.06 (0.04)	-0.02 (0.05)
age ^(a)	-	x	×	-	×	×	-	x	x
age ²	-	-	×	-	-	х	-	-	х
N	1044	1043	1043	1096	1095	1095	1095	1094	1094
AIC	1272.5	1272.1	1273.8	1267.2	1266.2	1263.2	615.4	615.6	608.0
Women	0.00 (0.02)	0.11* (0.06)	0.17*** (0.07)	-0.01 (0.02)	0.05 (0.05)	0.06 (0.06)	-0.02 (0.02)	0.04 (0.04)	0.11** (0.05)
age ^(a)	-	х	×	-	x	x	-	x	х
age^2	-	-	×	-	-	x	-	-	х
N	1909	1907	1907	1917	1915	1915	1920	1918	1918
AIC	2455.8	2450.1	2448.5	2080.2	2077.9	2079.8	1479.4	1474.2	1470.3

Notes: marginal effects are presented, robust standard errors in parentheses, *** p-value <0.01, ** p-value <0.05, * p-value<0.1. Models (1), (2) and (3) include dummy variables for interview and birth year. (a) : age in months. AIC = -2InL - 2k where InL is the maximized log-likelihood of the model and k is the number of parameters estimated. Given two models, the one with the smaller AIC (Ākaike Information Criterion) fits the data better than the one with the

larger

- Marginal effects on poor health Arginal effects on restricts activity

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	000000	
Main results				

Health outcomes (2)

Table 2: The impact of graduating in a bad economy on health care

Dep. variable	GI	o consultat	ions	Hospital	outpatient	consult.	Hospita	l inpatient	consult.
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
Men	0.00 (0.02)	0.00 (0.05)	-0.06 (0.05)	0.00 (0.02)	-0.02 (0.05)	-0.01 (0.06)	-0.01 (0.01)	0.03 (0.04)	0.04 (0.04)
age ^(a)	-	×	×	-	×	x	-	x	x
age ²	-	-	×	-	-	x	-	-	x
AIC	809.6	811.3	809.6	873.0	874.5	876.4	442.0	442.2	443.9
N	1094	1093	1093	1095	1094	1094	1034	1033	1033
Women	0.04** (0.02)	0.11** (0.05)	0.17*** (0.06)	0.00 (0.01)	-0.02 (0.04)	0.00 (0.04)	0.01 (0.02)	0.02 (0.04)	0.05 (0.05)
age ^(a)	-	х	×	-	х	х	-	х	х
age ²	-	-	×	-	-	х	-	-	х
N	1920	1918	1918	1918	1916	1916	1920	1918	1918
AIC	1984.1	1979.9	1979.5	1376.0	1374.2	1375.8	1675.9	1669.8	1669.5

Notes: marginal effects are presented, robust standard errors in parentheses, *** p-value ≤ 0.01 , ** p-value ≤ 0.05 , * p-value ≤ 0.1 . Models (1), (2) and (3) include dummy variables for interview and birth year. ^(a) : age in months. AIC = -2InL - 2k where InL is the maximized log-likelihood of the model and k is the number of parameters estimated. Given two models, the one with the smaller AIC (Akaike Information Criterion) fits the data better than the one with the larger.

Marginal effects on GP consultations

000000 000000	0	00	0000000	
000000 000000	0	00	0000000	Conclusion

Health outcomes (3)

Table 3: The impact of graduating in a bad economy on health behaviour

Dep. variable	Cu	rrently smo	kes		Ever smoke	d		Drinking ^(b)	
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
Men	0.04 (0.04)	0.09 (0.11)	<mark>0.22*</mark> (0.12)	<mark>0.06*</mark> (0.03)	<mark>0.17**</mark> (0.08)	0.27*** (0.09)	-0.02 (0.04)	-0.03 (0.11)	0.02 (0.12)
age ^(a)	-	х	х	-	x	×	-	х	х
age ²	-	-	х	-	-	x	-	-	х
N	619	618	618	619	618	618	597	596	596
AIC	852.7	853.1	851.1	687.7	684.0	682.4	844.8	845.5	846.8
Women	-0.01 (0.03)	0.04 (0.08)	0.02 (0.09)	-0.01 (0.03)	0.09 (0.07)	0.09 (0.08)	0.04 (0.03)	0.01 (0.08)	-0.01 (0.09)
age ^(a)	-	х	х	-	х	×	-	х	х
age ²	-	-	×	-	-	×	-	-	×
N	1029	1027	1027	1029	1027	1027	945	943	943
AIC	1416.1	1414.6	1416.5	1280.8	1279.5	1281.5	1202.3	1201.3	1203.2

Notes: marginal effects are presented, robust standard errors in parentheses, *** p-value ≤ 0.01 , ** p-value ≤ 0.05 , * p-value ≤ 0.1 . Models (1), (2) and (3) include dummy variables for interview and birth year. ^(a) : age in months. ^(b) : moderate to heavy drinking. AIC = -2InL - 2k where InL is the maximized log-likelihood of the model and k is the number of parameters estimated. Given two models, the one with the smaller AIC (Akaike Information Criterion) fits the data better than the one with the larger.

Marginal effects on smoking behaviour

Introduction	Institutional framework and identification strategy	Data	Results	Conclusio
000000	0000000	00	0000000	
Main results				

Health outcomes (4)

Table 4: The impact of leaving school in a bad economy on health outcomes (model 3)

	Men			Women		
	m.e.	s.e.	N	m.e.	s.e.	N
Probit estimations						
Health status						
Poor health	0.10	(0.09)	1043	0.17***	(0.07)	1907
Longstanding illness	0.06	(0.08)	1095	0.06	(0.06)	1915
Restricts act	-0.03	(0.05)	1094	0.11**	(0.05)	1918
Health care		. ,			. ,	
GP consultations	-0.06	(0.05)	1093	0.17***	(0.06)	1918
Hospital outpatient consultation	-0.09	(0.06)	1094	-0.00	(0.04)	1916
Hospital inpatient consultation	0.04	(0.04)	1033	0.05	(0.05)	1918
Health behaviour		. ,			. ,	
Currently smokes	0.22*	(0.12)	618	0.03	(0.09)	1027
Ever smoked	0.27***	(0.09)	618	0.09	(0.08)	1027
Moderate to heavy drinking	0.02	(0.13)	596	-0.01	(0.09)	943

Notes: marginal effects (m.e.) are presented, robust standard errors in parentheses (s.e.), *** p-value \leq 0.01, ** p-value \leq 0.05, * p-value \leq 0.1. Our models include age in month, (age in month)², dummy variables for interview and birth year.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	
Robustness checks				

Robustness checks

- Run a placebo test using the 1953 and 1954 cohorts each school cohort faced same school-leaving unemployment rates at the end of compulsory schooling.
 Placebo test
- Differential incentives to take the GCE O-Level/CSE examinations at the end of Year 11.
 - Our results are virtually unchanged when controlling by a dummy indicating whether an individual holds a Year-11 equivalent degree.
- Results virtually unchanged when using school-leaving unemployment rates instead of dummy variable *T_i*.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	00000000	
Mechanisms				

Labour-market outcomes

Table 5: The impact of leaving school in a bad economy onlabour-market outcomes (model 3)

		Men			Women	
	m.e.	s.e.	Ν	m.e.	s.e.	N
Probit regressions						
Economic status						
Keeping house	0.01	(0.03)	495	0.07	(0.07)	1918
Unemployed	0.06	(0.06)	1095	-0.02	(0.03)	1918
For those currently employed						
Less than 1 month	0.04	(0.05)	512	0.05	(0.04)	805
Less than 3 months	-0.02	(0.05)	613	0.06	(0.07)	861
Less than 6 months	-0.04	(0.06)	723	0.03	(0.08)	861
Less than 1 year	0.01	(0.09)	723	-0.05	(0.09)	861
Less than 5 years	-0.00	(0.11)	723	-0.06	(0.10)	861
More than 5 years	0.00	(0.11)	723	0.06	(0.10)	861
Linear regressions						
Earnings (log)	-0.03	(0.11)	799	-0.17	(0.17)	957

Notes: marginal effects (m.e.) are presented, robust standard errors in parentheses (s.e.), *** p-value \leq 0.01, ** p-value \leq 0.05, * p-value \leq 0.1. Our models include age in month, (age in month)², dummy variables for interview and birth year.

Summary results				
000000	000000	00	000000	
Introduction	Institutional framework and identification strategy	Data	Results	Conclusion

Summary results

- Leaving school in a bad economy :
 - seems to increase poor health, GP consultations, restricts activity among women.
 - may affect smoking behaviour among men.
 - has no effect for both men and women on unemployment, inactivity patterns and earnings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	000000	00	0000000	

Conclusion

- Leaving school in a bad economy :
 - seems to increase GP consultations, poor health and probability to declare restricts activity among low-educated women in the UK.
 - may affect smoking behaviour among men.
- Additional piece of evidence in a new and increasing literature.

• Cumulative effect versus initial shock?

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	000000	00	0000000	

Limitations

- External validity :
 - similarity between the 1958-1959 cohorts and current cohorts of school-leavers ?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

• similarity between the 1973 oil crisis and current Great recession ?

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	

References

- CUTLER, D., W. HUANG AND A. LLERAS-MUREY (2014) "When Does Education Matter? The Protective Effect of Education for Cohorts Graduating in Bad Times" National Bureau of Economic Research Working paper No. 20156.
- GENDA, Y., A. KONDO, AND S. OHTA (2010): "Long-term effects of a recession on labour-market entry in Japan and the United States", Journal of Human Resources, 45(1).
- HERSHBEIN, B. J (2012) "Graduating High School in a Recession: Work, Education, and Home Production", The BE journal of economic analysis & policy, 12.
- HESSEL, P. AND M. AVENDANO (2013) "Are economic recessions at the time of leaving school associated with worse physical functioning in later life?" Annals of epidemiology 23, 708–715
- KAHN, L. B. (2010): "The long-term labor market consequences of graduating from college in a bad economy", Labour Economics, 17(2), 303–316.
- MACLEAN J. C. (2013) "The health effects of leaving school in a bad economy" Journal of health economics, 32, 951–964
- MACLEAN J. C. (2014a): "Does leaving school in an economic downturn impact access to employer-sponsored health insurance?" IZA Journal of Labor Policy, 3, 19.
- MACLEAN J. C. (2014b): "Does leaving school in an economic downturn persistently affect body weight? Evidence from panel data," mimeo.
- MACLEAN J. C. (2014c): "The Lasting Effects of Leaving School in an Economic Downturn on Alcohol Use," Industrial and Labor Relations Review, forthcoming.
- OREOPOULOS, P., T. VON WACHTER, AND A. HEISZ (2012): "The short and long-term career effects of graduating in a recession", American Economic Journal: Applied Economics, 4(1), 1–29.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 STEVENS, K. (2007): "Adverse economic conditions at labour market entry: Permanent scars or rapid catch-up", Department of Economics, University College London, Job market paper.

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	

Middle to long-term effect on women's poor health

A Back to presentation

Figure 5: Marginal effects on women's poor health (GHS 1983-2000)

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	

Middle to long-term effect on women's restricts activity illness

Back to presentation

Figure 6: Marginal effects on women's restricts activity (GHS 1983-2000)

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	

Middle to long-term effect on women's GP consultations

Back to presentation

Figure 7: Marginal effects on consulting GP during the two weeks preceding the interview (GHS 1983-2000)

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	000000	00	0000000	

Middle to long-term effect on men's smoking behaviour

Back to presentation

Figure 8: Marginal effects on men's smoking behaviour (ever smoked) (GHS 1983-2000)

Introduction	Institutional framework and identification strategy	Data	Results	Conclusion
000000	0000000	00	0000000	

Placebo test

Back to presentation

Table 6: The impact of leaving school in a bad economy on health outcomes for the 1953-54 cohorts (model 3)

		Men			Women	
	m.e.	s.e.	N	m.e.	s.e.	N
Probit estimations						
Health status						
Poor health	-0.05	(0.11)	631	-0.13	(0.08)	1204
Longstanding ill	0.06	(0.11)	664	-0.02	(0.08)	1210
Restricts act	0.00	(0.07)	663	-0.02	(0.06)	1213
Health care						
GP consultations	-0.04	(0.06)	664	0.04	(0.07)	1211
Hospital outpatient consultation	-0.10	(0.06)	664	-0.08	(0.05)	1212
Hospital inpatient consultation	-0.02	(0.04)	619	-0.07	(0.05)	1212
Health behaviour						
Currently smokes	-0.09	(0.15)	390	0.18	(0.11)	653
Ever smoked	0.03	(0.11)	362	0.10	(0.09)	653
Moderate to heavy drinking	-0.24	(0.15)	372	-0.04	(0.11)	617

Notes: marginal effects (m.e.) are presented, robust standard errors in parentheses (s.e.), *** p-value \leq 0.01, ** p-value \leq 0.05, * p-value \leq 0.1. Our models include age in month, (age in month)², dummy variables for interview and birth year.

Does health insurance encourage the rise in medical prices? A test on balance billing in France

Brigitte DORMONT, Mathilde PERON

PSL, Université Paris Dauphine

16 March 2015

2 French regulation of ambulatory care

3 Data & Empirical strategy

Motivation Research Question Literature

Motivation

- Social health insurances are designed to favor access to care
- BUT the effectiveness of coverage depends on their ability to control prices

Balance billing : physicians are allowed to charge their patients more than the regulated fee

- Increase in out-of-pocket (OOP) payments
- SHI coverage might favor the demand for expensive physicians who increase their fees in return
- Increase in premiums for SHI policyholders or/and increase in OOP

Introduction French regulation of ambulatory care Data & Empirical strategy

> Results Conclusion

Motivation Research Question Literature

Policy Questions

- Should balance billing be restricted or forbidden ?
- Should coverage of balance billing be restricted ?
- Should the government only monitor the supply for care ?
- Should the government allow balance billing to promote various levels of care quality ?

Motivation Research Question Literature

Purpose of this paper

Other

Measure the causal impact of a positive shock on supplementary health coverage on the use of physicians who charge balance billing

Scope:	France, 2010-2012 Ambulatory care, specialists consultations
<u>At stake</u> :	Moral hazard induces inflationary effect on medical prices BB can increase welfare through higher quality of care
questions	What is the influence of supply organization ? Does balance billing limit access to care ?
Motivation Research Question Literature

Literature (1/2)

What is the effect of Balance billing on social welfare ?

Balance billing is just a transfer from patients with high WTP to physicians

• Paringer (1980), Mitchell & Cromwell (1982), Zuckerman & Holahan (1989)

Balance billing allows physicians to perform higher quality of care

• Glazer & McGuire (1993), Kifmann & Scheuer (2011)

Balance billing might limit access to care

• Jelovac (2013)

Empirical evidences

- McKnight (2007), US data : limiting BB reduces OOP without any change on health care use → simple rent extraction ?
- Desprès and alii (2011), French data : foregone care is more frequent in regions where BB is higher → health care access issues ?

Motivation Research Question Literature

Literature (2/2)

What could be the effect of a generous coverage on BB ?

(1) On the supply side : physicians may increase their fees in response to insurance coverage

Feldstein (1970, 1973), Sloan (1982), Feldman & Dowd (1991), Chiu (1997), Vaithianathan (2006)

(2) On the demand side :

- Moral hazard : "the slope of health care spending, with respect to price" (Einav, Finkelstein and alii, 2013)
- Assuming a negative price elasticity of demand, a better coverage leads to a decrease in net health care price and an increase in health care consumption
 - Pauly (1974), RAND experiments (1987), Chiappori (1998)

French regulation of ambulatory care

- Physicians are self-employed and paid on a fee-for-service basis
- Sector 1 (S1) physicians are not allowed to charge more than the reference fee
- Sector 2 (S2) physicians are allowed to balance bill their patients
- S1 and S2 physicians are supposed to provide the same quality of care
- BB is not an issue for GPs: 87% are is Sector 1 in 2012 \rightarrow focus on specialists: 42% are is Sector 2 in 2012

A patient can choose to visit a sector 1 or a sector 2 specialist

Her decision to visit a S2 specialist rather than a S1 will depend on

- her beliefs on S2 quality : $g(x_1, x_2)$
- the generosity of her SHI coverage for balance billing
- cost of access to S1 or S2 specialists: distance, availability

The decision to consult a S2 specialist

bb: balance billing s: supplementary insurance coverage d_1, d_2 : costs relative to search, transportation and waiting time for a visit in S1 or S2

200

The effect of a better coverage for BB

bb: balance billing s: supplementary insurance coverage d_1, d_2 : costs relative to search, transportation and waiting time for a visit in S1 or S2

200

Availability of S1 and S2 specialists and BB

Data Empirical strategy

Introduction

French regulation of ambulatory care

3 Data & Empirical strategy

- Data
- Empirical strategy

4 Results

5 Conclusion

Data Empirical strategy

Data

MGEN features :

- "Mutuelle" : Non Profit insurance cooperative
- MGEN is mandatory for teachers for basic HI
- MGEN Supplemental health insurance is voluntary
- There is only one SHI contract with no BB coverage
- SHI premium are proportional to wage

Variables, from 2010 to 2012 :

- socio-dem characteristics, income, health, specialist:population ratios (SPR)
- health care consumption before and after switching

Data Empirical strategy

Stayers vs Switchers

Table 1 : Control and treatment groups

Control Group : STAYERS (N=87,291)

Basic Insurance (MGEN)						
2010	2011	2012				
SHI MGEN						

Treatment Group : SWITCHERS (N=7,940)

Data Empirical strategy

Variables of interest

- After they quit MGEN, do switchers visit specialists more often ?
 Number of visits to a specialist : Q
- Do they consume a higher share of sector 2 consultations ?
 - Share of S2 visits in the total number of visits : Q2/Q
 - Average amount of balance billing per visit : BB/Q
- Do sector 2 specialists charge them more ?
 - Average amount of balance billing per sector 2 visit : BB/Q2

Data Empirical strategy

Empirical specification

(1) Estimation with fixed effects on years 2010 and 2012 (OLS)

 $Y_{it} = \beta_0 + \tau Q U I T_{it} + \lambda 2012_t + \beta_1 X_{it} + \beta_2 S_{it} + \alpha_i + \epsilon_{it}, t = 2010, 2012$

QUIT = 1 for Switchers in 2012, 0 else ; 2012 = 1 in 2012, 0 else X_{it} : demand characteristics ; S_{it} : supply characteristics ; α_i : individual fixed effect

• This specification allows for possible correlation between individual unobserved heterogeneity and decision to quit

(2) IV estimation with fixed effects (2SLS)

- The effect of a better coverage is identified and consistent even if $Cov(QUIT_{it}, \epsilon_{it}) \neq 0$ provided that instruments are exogenous and correlated with QUIT
- We use *retirement in 2011 before 55* and *moving in 2011* as excluded instruments

Descriptive statistics Impact of a better coverage on balance billing

Introduction

French regulation of ambulatory care

3 Data & Empirical strategy

4 Results

- Descriptive statistics
- Impact of a better coverage on balance billing

5 Conclusion

Descriptive statistics Impact of a better coverage on balance billing

Sample

• Switchers are younger and healthier than Stayers

Table 2 : Individual characteristics of stayers and switchers in 2010

	N	Women	Age	Income	Chronic Disease
		%	mean <i>(sd)</i>	mean <i>(sd)</i>	%
Stayers	87,291	65	55.4 <i>(15.3)</i>	2434 (774)	17.5
Switchers	7,940	71 ^	42.5 <i>^ (13)</i>	2399 <i>^(770)</i>	6.8 ^

^Significantly different from Stayers, p<0.001

We restrict our sample to individuals who had at least one specialist visit in 2010 (*if* spe=1)

- Number of Stayers if spe=1: 53,202
- Number of Switchers if spe=1 : 5,134

Descriptive statistics Impact of a better coverage on balance billing

Balance billing consumption

Table 3 : Total amount of balance billing in 2010, if Spe=1

		Whole sample	Low SPR in S2	High SPR in S2
		mean <i>(sd)</i>	mean <i>(sd)</i>	mean <i>(sd)</i>
BB	Stayers	30 (58.9)	11.5 (31.2)	42 (74)
if Spe=1	Switchers	41 <i>^ (72.8)</i>	13 <i>(26.7)</i>	53.6 <i>^(85.5)</i>

^ Significantly different from Stayers, p < 0.001

- Even when they had no BB coverage, Switchers consumed more balance billing than Stayers in 2010
- When controlling for income, chronic disease, and supply side drivers, the average amount of BB per consultation is 19% higher for switchers

Effect of SHI coverage - Whole sample

• A better SHI coverage increases by 9% the share of S2 consultations, with no impact on the number of visits to a specialist

 Table 4 :
 Effect of a more comprehensive coverage on balance billing

 Estimations with individual fixed effects, T=2010,2012

	log(Q)	$\log(Q2/Q)$	$\log(BB/Q)$	log(BB/Q2)
(1) Whole sample				
OLS	0.00	0.01	0.04*	-0.00
2SLS 均†	0.15	0.09**	0.34*	-0.15
* p<0.1, ** p<0.05, **	** p<0.01	(1)N=58,336		

Control: 2012, income, CD, inpatient stays, GP, specialist population ratio, exp. phy. Instruments : alpha = Retired before 55; blue = moved out

Tests for 2SLS regression on log(Q2/Q)

*Instruments are well correlated with QUIT (First stage Fstat = 336)
*Exogeneity of QUIT rejected (Hausman test stat=4.66 (p-value=0.03))
*Sargan test stat=0.048 (p-value=0.82)

Effect of SHI coverage and supply side organization (1/3)

Table 5 : Crossed levels of S1 and S2 specialist:population ratios in 2010

Effect of SHI coverage and supply side organization (2/3)

• Positive and significant impact of SHI on the share of S2 consultations (+19%) for patients who lived in regions with a high sector 2 specialist:population ratio (50% of our sample)

Table 6 : Effect of a more comprehensive coverage on balance billing

		$\log(Q)$	$\log(Q2/Q)$	$\log(BB/Q)$	log(BB/Q2)
(5) Low SPR2					
	OLS	-0.05	0.01	0.06	0.08
	2SLS þ	0.56	0.04	-0.52	-0.91*
(6) High SPR2					
	OLS	0.03	0.01*	0.08**	0.00
	2SLS þ	0.14	0.19***	0.80**	0.01

Estimation with individual fixed effects, T=2010,2012

* p < 0.1, ** p < 0.05, *** p < 0.01 (5)N=6,248 ; (6)N=28,711

Control: 2012, income, CD, inpatient stays, GP, specialist population ratio, exp. phy.

Instruments : aabla = Retired before 55

Effect of SHI coverage and supply side organization (3/3)

- (7) High S1 specialist:population ratio : No impact of change in BB coverage
- (8) <u>Low & medium S1</u> specialist:population ratio : Positive and significant effect of SHI coverage on the **share of S2 visits** (+23%)
- (10) Low S1 specialist:population ratio + proportion of S2 > 50% : increase in the quantity of consultations (+85%)

Table 7 : Effect of a more comprehensive coverage on balance billing

		log(Q)	$\log(Q2/Q)$	$\log(BB/Q)$	log(BB/Q2)
(7) High SPR2*High SPR1					
	OLS	0.01	0.01	0.07	0.00
	2SLS 🛛	0.12	0.15	0.61	-0.04
(8) High SPR2*Low & mediu	m SPR1				
	OLS	0.03	0.01	0.07*	0.00
	2SLS þ	0.15	0.23**	0.99**	0.06
(10) High SPR2*Low SPR1					
*Proportion of S2>50%	OLS	0.01	0.01	0.08	-0.00
	2SLS կ	0.85**	0.20	1.19*	-0.14
* <0.1 ** <0.05 *** <0.01					

Estimation with individual fixed effects, T=2010,2012

* p < 0.1, ** p < 0.05, *** p < 0.01 (7)N=13,974; (8)N=14,737; (10)N=3,735

Robustness checks (1/2)

- Only one instrument (retired before 55) can be used for estimation on local sub-samples
- One has to check the robustness of estimates on total sample with this instrument

Table 8 : Estimations on total sample with one or two instruments

	log(Q)	$\log(Q2/Q)$	$\log(BB/Q)$	log(BB/Q2)
(1) Whole sample				
2SLS 均†	0.15	0.09**	0.34*	-0.15
2SLS þ	0.15	0.08*	0.29	-0.05

* p < 0.1, ** p < 0.05, *** p < 0.01 (1)N=58,336

Control: 2012, income, CD, inpatient stays, GP, specialist population ratio, exp. phy. Instruments : a = Retired before 55; f = moved

Robustness checks (2/2)

- The instrument retired before 55 concerns mostly women
- One has to check the robustness of results when restricting the sample to women younger than 56

Table 9 : Estimation on women below 56

	$\log(Q)$	$\log(Q2/Q)$	$\log(BB/Q)$	log(BB/Q2)
(5) Low SPR2				
2SLS b	0.56	0.04	-0.52	-0.91*
Women under 56 - 2SLS þ	1.35**	0.00	-0.60	-0.91*
(6) High SPR2				
2SLS ኳ	0.14	0.19***	0.80**	0.01
Women under 56 - 2SLS 🛛	0.57**	0.21**	0.99**	0.04
(7) High SPR2*High SPR1				
2SLS ኳ	0.12	0.15	0.61	-0.04
Women under 56 - 2SLS 🛛	0.51	0.11	0.52	-0.08
(8) High SPR2*Low & medium SPR1				
2SLS ኳ	0.15	0.23**	0.99**	0.06
Women under 56 - 2SLS 🛛	0.64	0.31**	1.44**	0.18

* p<0.1, ** p<0.05, *** p<0.01

Control: 2012, income, CD, inpatient stays, GP, specialist population ratio, exp. phy.

Instruments : aabla = Retired before 55

Introduction

2 French regulation of ambulatory care

3 Data & Empirical strategy

4 Results

Evidence of moral hazard

• A better coverage of balance billing by supplemental health insurance leads patients to increase the share of S2 visits

Heterogeneity in preferences for sector 2 specialists

• Switchers use more S2 specialists and pay more BB

Main findings (2/2)

Heterogeneity in the impact of better SHI coverage

- No significant impact of better coverage in areas where
 - there are few S2 specialists (who balance bill their patients)
 - there are enough S1 specialists (who charge the regulated fee)
- There is a positive impact of better coverage on the share of S2 visits (+23%) and the average BB (+99%) in areas where
 - there are many S2 specialists, and not many S1 specialists (high S2*low and medium S1)
 - concerns about 25% of the population
- Some evidence of limitation in access to care in areas with more than 50% S2 and few S1
 - concerns about 6% of the population (but teachers are not poor people)

Policy consequences

Evidence of heterogeneity in preferences for S2 specialists When there is a sufficient number of S1 specialists there is no limitation in access to care nor inflationist impact of more generous supplemental coverage.

The issues regarding balance billing could be solved with a better monitoring of supply for care If there were enough Sector 1 specialists, it would be not necessary to introduce limitation in the coverage supplied by SHI

Does health insurance encourage the rise in medical prices? A test on balance billing in France

Brigitte DORMONT, Mathilde PERON

PSL, Université Paris Dauphine

16 March 2015

Joint elicitation of health and income expectations: Insights from a representative survey of the French Population.

> Stéphane Luchini AMSE/GREQAM-CNRS

March 2014 - Journée de la Chaire Santé

Brigitte Dormont (Université Paris-Dauphine) Marc Fleurbaey (Princeton University) Anne-Laure Samson (Université Paris-Dauphine) Stéphane Luchini (AMSE-CNRS) Erik Schokkaert (KU Leuven) Clémence THEBAUT (HAS) Carine Vandevoorde (KU Leuven)

Part of a larger project: "Valeur de la santé" (Chaire Santé Dauphine) (that links expectations with preferences)

Introduction

- Expectations, together with preferences, are a key component of economic analysis
- Health and income expectations are certainly of great importance for one's decisions in life (as well as for public policies).

Most often, economists rely on assumptions about expectations (e.g. "rational expectations"): Individual expectations are supposed to coincide with epidemiological and historical data

• Debatable:

- individuals have private information about their future health and income (Manski, 2004; Hurd, 2009)
- 2 Average expectations can differ from actual observations.

Introduction (continued)

Why eliciting health expectations and income expectations jointly?

Empirical evidence shows that there exists a positive correlation between health and income, and a significant gradient over the whole range of individual situations, better health being associated with greater income (see, e.g., Deaton, 2002)

- People's expectations may also exhibit such a gradient and eliciting health and income expectations separately would not allow one to investigate this issue.
- This paper proposes a method that elicits jointly health and income expectations over the life cycle in surveys

Eliciting Expectations

- Self-reported data on expectations
- Attitudinal research: respondents are asked whether they "think" or "expect" that an event will occur (Curtin, 1982)
- Sometimes the strength of the belief is also measured: "very,"
 "fairly," "not too," or "not at all" (Davis and Smith 1994)
- Difficulties:
 - 1 Interpersonal comparability of responses
 - Information difficult to use in a "structural" analysis (i.e that uses quantitative models)
- ⇒ Elicitation of probabilistic expectations (see Manski 2004 for a review and Pessaran and Weale 2006)

Eliciting Probabilistic Expectations

- Probabilistic expectations: well-defined numerical scale for responses, possible checks of internal consistency and calibration.
- Example:

SEE Household Income Expectations Questions: What do you think is the percent chance (or what are the chances out of 100) that your total household income, before taxes, will be less than Y over the next 12 months?

- Question is asked four times, *Y* taking 4 values (e.g. see Dominitz and Manski 1997)
- Practical difficulty for life-long income and health expectations ⇒
 A lot of questions that may not be comprehensive enough in a standard face-to-face questionnaire.

Joint Elicitation of Expectations

- Subjects are given **20 tokens** representing each a 5 percent chance and are asked to place them on a 5×5 grid.
- Health: Typical of health-related quality of life surveys (see e.g. Ware and Sherbourne, 1992) and income: respondents are asked to place tokens on a 5×5 grid
- Monthly income: Intervals were defined on the basis of the current French equivalized monthly income.
- Expectations are elicited per decade 20 to 29, 30 to 49, ... (therefore up to 9 grids per topic for less than 20 years old respondents)
- Preliminary task: Each respondent first asked to indicate what cell on the grid best represents his or her health state and income situation during the current decade

Joint Elicitation of Expectations

Example:

Joint elicitation of health and income expectations: Insights from a representative su8vej9o

Survey

- In November and December 2009, health and income expectations of a representative sample of 3,331 respondents from the French population, from 18 to 97 years old, were elicited.
- Survey was conducted by face-to-face interviews.

Mean probabilistic expectations of 40 to 50 years old respondents for the imagine future age 50 to 59's

Joint elicitation of health and income expectations: Insights from a representative stovelyof

Empirical results

Joint elicitation of health and income expectations: Insights from a representative survey of the
Marginal expectations by future age (1)

Joint elicitation of health and income expectations: Insights from a representative stavelyof

Marginal expectations by future age (2)

Joint elicitation of health and income expectations: Insights from a representative studyed

Divergence between income expectations and current income (Kullback-Leibler divergence)

Joint elicitation of health and income expectations: Insights from a representative stravelyof

Divergence between health expectations and current health (Kullback-Leibler divergence)

Joint elicitation of health and income expectations: Insights from a representative stavelyof

Preliminary conclusions

- Income expectations are very close to current income
- Health expectations are close to current health except for future ages greater than 70:
 - Driven by respondents' pessimism regarding future health
- one may then wonder: why not relying on current health and (in particular) current income only instead of elicitating expectations?

Level certainty of respondents by age group and decade

Joint elicitation of health and income expectations: Insights from a representative starvetyof

Do expectations exhibit a gradient between health and income?

 Kendall's rank correlation coefficient between current health and income (bold figures on the diagonal) and expectations on health and income by age group and decade

				Future ages	;			
Age group	[20; 30[[30; 40[[40; 50[[50; 60[[60; 70[[70; 80[[80; 90[[90; 100]
[20; 30]	.045	0.087	0.138	0.127	0.116	0.111	0.137	0.123
[30; 40]		.178	0.191	0.159	0.121	0.116	0.110	0.113
[40; 50]			.254	0.264	0.260	0.240	0.225	0.242
[50; 60]				.260	0.163	0.186	0.164	0.136
[60; 70]					.168	0.151	0.134	0.133
[70; 80]						.218	0.126	0.061
[80; 90[.248	0.209

 \Rightarrow Gradient between health and income, observed between current subjective health and income, is also present in expectations

Concluding remarks

- At the aggregate level, marginal income expectations very much look like current income distribution in the population:
 Respondents do not expect changes in permanent income in the future (given that they were asked to not account for changes induced by inflation)
- The same goes for marginal health expectations except for future ages greater than 70 for which respondents are more "pessimistic".
- At the individual level, however, we find a substantial level of certainty (especially for income).
- Using current health and income distributions as a basis for modeling expectations (instead of eliciting expectations) would therefore induce too much risk.

Incremental versus standard WTP An application to out-of-hours and emergency care

Karine Lamiraud¹, Robert Oxoby² Cam Donaldson³

¹ ESSEC Business School and THEMA-University of Cergy Pontoise ²University of Calgary ³Glasgow Caledonian University

1. The standard WTP approach

The standard WTP method

involves monetary valuation of benefits

makes it possible to assess the strength of preferences

Limitations when multiple programmes are compared

- Inability of patients'WTP values to discriminate between treatment options (essentially, the result of embedding)
- Preference reversals (Olsen and Donaldson, 1998; Olsen, 1997)

→ To aid decision making, a basic prerequisite would be an acceptable degree of convergence between respondents' stated rankings and their rankings inferred from stated WTP values

2. The incremental approach

An incremental WTP approach was devised in order to encourage more differentiated answers and a higher degree of consistency among the respondents (Shackley and Donaldson, 2002)

In the incremental approach, the individual is asked

- to give a value for his/her lowest ranked programme
- how much more s/he would be willing to pay for his/her second ranked programme

-a theoretical basis for the incremental approach has not been elucidated

- There is little evidence showing that the incremental approach might indeed achieve greater consistency between explicit rankings and implicit rankings inferred from WTP values

3. Objectives of this study

- One purpose of this paper is to provide a theoretical basis for the incremental approach
- This study also aims to test the incremental and standard approaches
- ➔ The context for the application is aiding decision making about different forms of emergency and out-of-hours service provision in France

4. Emergency and out-of-hours services in France

Mobile means	Fixed Means
SAMU/SMURHeavy means sent from hospitalsInvolved in vital emergencies	Outpatient emergency centers "Maisons Médicales de Garde"
 SOS doctors Dedicated to emergency care Equipped with an electrocardigram and perfusion devices 	Emergency hospital units
 Doctors on duty Perform emergency care in addition to their usual duties Firemen/Imbulance 	
Not equipped with medical doctors	

Outline

① Theoretical framework

② WTP study

③ Statistical and econometric methods

④ Results and Discussion

1. Assumptions

-Based on the theory of reference dependent preferences (Schoemaker, 1982) we assume that the response of any individual to a WTP question is influenced by that person's **reference** point

-When a respondent is asked to value several competing policy alternatives, s/he is likely to compare each of these against **the status quo** (or « do nothing ») option

-The incremental approach redefines the reference point from which the response is measured (the least preferred option)

2. Implications

We show that :

→ in the standard approach, WTP values for each option, predominantly reflecting improvements over the status quo, fail to discriminate among the alternatives

→ the incremental approach, which redefines the reference point from which the response is measured, gives a more discriminating value for the intensity of preferences

1. WTP survey

A WTP method was implemented to assess preferences for different emergency services

Survey

→ Telephone survey carried out by TNS Sofres in July 2009

→ Representative sample of the French adult population living in urban areas (> 100 000)

→Two questionnaires (standard and incremental) randomly assigned

2. Questionnaires

Part A

The interviewer described the characteristics of each emergency and out-of-hours actor

Part B

Respondents were asked to rank these different actors in order of preference

(from the most prefererred to the least preferred option). No equal ranking was possible

Part C

Respondents were asked to imagine that **financing mechanisms** for emergency services had been changed and that the resources should be provided by households through **insurance premia**

Respondents were then asked their WTP for such insurance premia

3. WTP questions

Standard questionnaire

 Respondents were asked the maximum premium that they would be willing to pay <u>for each actor</u>

- The order of the 6 questions was randomized so as to avoid sequence effects (Payne et al., 2000)

- Respondents had to imagine that they were given back the amount they said they were willing to pay for the previous programme

Incremental questionnaire

 Respondents were asked the maximum premium that they would be willing to pay for the actor ranked sixth (in part B)

 Respondents were then asked <u>how</u> <u>much more</u> they would be willing to pay <u>for the second least preferred option</u>
 Etc...

• Respondents were told to imagine they were given back the amount they were willing to pay for the previously valued option

4. Method for WTP values elicitation

① The interviewer cites an amount (randomly selected)	^② The respondents must say if this amount is an amount that they are sure they would pay
5 euros100 euros10 euros110 euros20 euros120 euros20 euros120 euros30 euros130 euros40 euros140 euros50 euros150 euros60 euros160 euros70 euros170 euros80 euros180 euros90 eurosMore than 180 euros	 if the respondents answer yes, then the interviewer cites the next highest amount until the respondents say no or until «more than 180 euros» if the respondents answer no, then the interviewer cites the next lowest amount until the respondents say yes or until « 5 euros »

5. WTP approach

→An ex ante approach (not ex post) was chosen

→An insurance based ex ante approach (not tax based) was chosen

1. Aims

The empirical analysis aimed to test the validity of the incremental approach:

- (i) Whether it improved consistency between respondents' explicit ranking of the providers and the ranking implied by their WTP values
- (ii) Whether it made it possible to differentiate between the various providers

2. Regression analyses

We built a panel dataset including 6 observations per respondent (i.e. 1680 observations)

$$RANK_{ij} = Z_j \alpha + X_{ij} \beta + \varepsilon_{ij} \qquad WTP_{ij}^* = Z_j \alpha + X_{ij} \beta + \varepsilon_{ij},$$

- WTP*_{ii} is the maximal WTP of individual *i* for option *j*
- RANK_{ij} is the explicit rank for each actor (1 = most preferred 6 = least preferred)
- X_{ii} is a vector of individual characteristics
- Z_i represents a set of option dummies (SOS will be used as the reference)
- we estimated an ordered probit model on the explicit ranking
- →we estimated a tobit model for WTP with left-censoring and right-censoring
- →we used the **cluster option** (because each respondent assesses all six emergency options)
- → the regressions were run excluding the individuals with zero answers for all six options

1. The study population

280 people were interviewed:140 received the standard version, 140 received the incremental one

	All	Standard questionnaire	Incremental questionnaire	p*
	n = 280	n = 140	n = 140	
Age (mean)	50.1	50.9	49.4	0.46
Male (%)	45.7	39.3	52.1	0.03
Secondary school or short professional track (%)	31.4	32.1	30.7	0.60
High school diploma (Baccalaureat)	21.4	24.3	18.6	
Short university studies (2 yrs) or long professional track (%)	15.7	14.3	17.1	
University degree higher than bachelor's (%)	31.4	29.2	33.5	
Individual is married or living in a couple (%)	57.1	57.9	56.4	0.81
Number of children under 15 living in the household (mean)	0.4	0.4	0.4	0.95
Monthly household net Income (1-10)** (mean)	5.7	5.8	5.6	0.64
Excellent self assessed health (%)	30.0	30.0	30.0	0.83
Good self assessed health (%)	47.9	49.3	46.4	
Poor self-assessed health (%)	22.1	20.7	23.6	
Individual has supplementary health insurance coverage (%)	90.7	90.7	90.7	1.00
Used at least one of the 6 emergency services in the previous year	33.3	29.3	37.9	0.13
All statistics are weighted				

* Test of difference between the standard and incremental versions

(student t-test for continuous variables, chi2 for categorical variables)

** (euros per month) 1 . < 800, 2. [800 - 1000[, 3. [1000 - 1200[, 4. [1200 - 1500[, 5. [1500 - 1800[, 6. [1800 - 2300[,

7. [2300 - 3000[, 8. [3000 - 3800[, 9. [3800 - 5300[, 10. ≥ 5300 euros

→ There were no significant differences between the 2 groups but in terms of gender distribution

2. Explicit ranking of actors

SMUR/SAMU was ranked first most frequently. The next most frequently first ranked programme is Imbulance/ Firemen. The least preferred option is emergency outpatient centers.

	1st	2nd	3rd	4th	5th	6th	
SMUR/SAMU	34.3	32.9	16.1	8.6	5.4	2.9	100.0
SOS doctors	11.8	16.4	22.1	23.9	17.5	8.2	100.0
Physicians on duty	8.2	6.8	14.6	22.9	36.4	11.1	100.0
Imbulance/ Firemen	30.0	25.7	22.9	11.1	6.4	3.9	100.0
Hospital emergency units	12.1	16.1	20.7	25.7	18.9	6.4	100.0
Outpatient emergency centers	3.6	2.1	3.6	7.9	15.4	67.5	100.0

Distribution of option ranking in the total sample (n = 280)

➔ The Khi2 test of differences in the distribution of respondents's answers to the ranking question revealed no significant differences between the questionnaires

3. Descriptive statistics for WTP (1)

WTP descri	WTP descriptive statistics by actor in the standard and incremental questionnaire						
		SMUR/ SAMU	SOS doctors	Doctors on duty	Ambulance/ Firemen	Hospital emergency units	Outpatient emergency centres
Standard version	mean	41.2	36.7	37.6	34.8	32.3	26.0
(n = 140)	std	46.7	41.0	42.7	41.0	38.2	34.5
	median	30.0	25.0	20.0	20.0	20.0	10.0
	% of zeros	27.9	25.0	27.9	28.6	32.1	40.0
Incremental version	mean	103.2	66.1	59.5	97.9	69.2	41.9
(n = 140)	std	130.7	90.0	83.9	127.2	77.3	74.9
	median	57.5	30.0	27.5	47.5	42.5	10.0
	% of zeros	19.3	25.7	26.4	19.3	19.3	35.7

→ The SAMU/SMUR had the highest WTP while the outpatient emergency centers had the lowest

→ WTP values for all types of care were significantly higher in the incremental questionnaires

4. Descriptive statistics for WTP (2)

Mean and median wip by provider, o	bepending	on the	explicit rank	ang	
	WTP in t standard ve	he ersion	WTP in the incremental ver	sion	
	Mean	n	Mean	n	
SMUR/SAMU ranked 5-6*	35.8	12	24.1	11	
SMUR/SAMU ranked ≤ 4th*	41.7	128	109.9	129	
SOS doctors ranked 5-6* SOS doctors ranked ≤ 4th*	40.2 35.7	30 110	32.0 80.7	42 98	
Doctors on duty ranked 5-6*	36.0	69	30.9	64	
Doctors on duty ranked ≤ 4th*	39.2	71	83.6	76	
Ambulance/ Firemen ranked 5-6* Ambulance/ Firemen ranked ≤ 4th*	35.9 34.7	11 129	32.8 107.5	18 122	
Hospital emergency units ranked 5-6*	37.3	41	61.1	30	
Hospital emergency units ranked ≤ 4th*	30.2	99	72.5	110	
Outpatient emergency centres ranked 5-6*	24.5	117	26.7	115	

Maan and madian M/TD by provider depending on the evolution

* based on the explicit ranking question (see Table 3)

Outpatient emergency centres ranked ≤ 4th*

→ For the least preferred options (ranked 5-6), mean WTP is similar in the incremental and standard versions. For options ranked 1-4, mean WTP is higher in the incremental questionnaire

33.7

23

111.8

25

5. Regression results

	Standard quest	ionnaire	Incremental que stionnaire		
	Ranking (1)	WTP (2)	Ranking (1)	WTP (2)	
SAMU/SMUR	-0.768	4.70	-1.088	49.85	
SOS doctors	ref	ref	ref	ref	
Doctors on duty	0.409	0.51	0.188	-9.84*	
Ambulance/ Firemen	-0.666	-5.19	-0.82	42.58***	
Hospital emergency units	0.171	-9.30	-0.329	3.99	
Outpatient emergency centres	1.741	-18.69***	1.276***	-50.68***	
Male	0.007	-4.74	-0.003	28.48	
Age 18 - 30	-0.014	17.63	-0.006	69.9*	
Age 31 - 50	-0.010	25.16	-0.013	31.38	
Age 51 - 65	0.008	-1.64	-0.009	31.55	
Age > 65	ref	ref	ref	ref	
Excellent health status	0.001	-0.62	-0.007	47.43***	
Good health status	ref	ref	ref	ref	
Poor health status	0.014	-0.82	-0.02-	92.68	
Income	-0.035	1.78	0.001	8.33	
Number of children under 15 living in the household	0.008	-12.85	-0.004	-0.93	
Individual has supplementary health insurance coverage	0.038	-7.65	-0.020	68.01***	
Used at least one emergency service in the previous year	-0.010	-8.88*	-0.007	-43.38***	
0	666	666	678	678	
Test of normality of residuals (null hypothesis: normal errors)		0.72		0.82	
Test of homescedasticity		0.65		0.68	

(1) Ordererd probit models clustering for individuals (1 = most preferred option ... 6 = least preferred option)

(2) Tobit models clustering for individuals

* significant at 0.10 level, ** significant at 0.05 level, ***signi ficant at 0.001 level

All models include geographical areas (department) dummies

→ The declared WTP based on the incremental approach provides the same ranking of providers as the explicit ranking

→ The standard approach is only partially consistent with explicit ranking and proves unable to differentiate between the five most preferred providers

Robustness checks (1)

Mean WTP by income level in the incremental approach (n = 116)

	SMUR/ SAMU	SOS doctors	Doctors on duty	Ambulance/ Firemen	Hospital emergency units	Outpatient emergency centres
net income < 1500	71.4	45.8	41.9	72.6	50.3	31.0
net income 1500 - 3000	130.5	77.8	67.8	115.0	82.5	45.8
net income > 3000	106.2	75.8	70.8	108.8	76.2	50.9

→ The highest income group did not necessarily drive the results

Robustness checks (2)

Characteristics of individuals providing very small (<5 euros) WTP values for all 6 providers

	Individual with very	others	p*
	small WTP for		
	all six options		
	n = 49	n = 231	
Age (mean)	61.8	47.6	< 0.01
Age 18 - 30	0.0	19.5	<0.01
Age 31 - 50	18.4	36.4	
Age 51 - 65	42.9	29.4	
Age > 65	38.8	14.7	
Male (%)	40.8	46.8	0.45
Secondary school or short professional track (%)	34.7	30.7	0.87
High school diploma (Baccalaureat)	22.5	21.2	
Short university studies (2 yrs) or long professional track (%)	12.2	16.5	
University degree higher than Bachelor's degree (%)	30.6	31.6	
Individual is married or living in a couple (%)	61.2	56.3	0.53
Number of children under 15 living in the household (mean)	0.2	0.5	0.13
Income (1-10) (mean)	6.0	5.7	0.48
Excellent selfassessed health (%)	20.4	32.0	0.27
Good self assessed health (%)	55.1	46.3	
Poor selfassessed health (%)	24.5	21.7	
Individual has supplementary health insurance coverage (%)	98.0	89.2	0.05
Used at least one of the 6 emergency services in the previous year	22.5	35.9	0.07

* Test of difference between individuals with very small WTP for all six options and other individuals

(student t-test for continuous variables, chi2 for categorical variables)

→ This suggests that excluded individuals were most probably not expressing valid preferences

Robustness checks (3)

→ We considered the possibility that, going up the scale, the maximum WTP was an unobserved number between the last value to which the respondents said "yes" and the next one to which they would have said no

→An interval data regression model was estimated in the incremental and standard questionnaires: the results were not qualitatively different

Conclusions

→ The standard approach is reasonably consistent with explicit ranking but proves unable to differentiate between the five most preferred actors

→ The incremental approach provides evaluation results which are fully in line with those of explicit ranking question

→ Our empirical findings are in line with our theoretical framework

→Our findings suggest that the incremental approach provides results that can be used in priority setting contexts

Improvements on earlier work

➔ It was made explicit to respondents that their budget had not been diminished by any WTP values they may have stated for previous programmes

→ Each successive programme is valued over and above that ranked immediately below it

→ Respondents could perceive the ranking exercise and the WTP valuations as different processes: the wording was amended with the intention of conveying the notion of individual value in both contexts:

"place these programmes in order of how highly you value them starting with the one you like most. When doing this, concentrate on how much you value the proposed expansions and how you value preventing the proposed reductions from going ahead"

A discrete choice experiment under oath

Nicolas Jacquemet, Stéphane Luchini, Jason Shogren, Verity Watson

Paris School of Economics Université de Lorraine, BETA

イロン イ団 と イヨン イヨン

Economic valuation of health and health care policy

- Health care is a large part of government spending
- But it is not possible to fund all treatments or interventions
- Decisions have to be made and should reflect society's (unobservable) value
- Stated preference methods (increasingly choice experiments CEs) are used to quantify value

Such methods are useful for policy purpose only if they reflect true underlying preferences \Leftrightarrow if they are demand revealing

イロト イポト イヨト イヨト

Example of choice experiment

Choice 1: Please compare the pharmacies and tick which pharmacy, if any, you would visit

	Pharmacy A	Pharmacy B	Do nothing
Pharmacy location	In a shopping centre	In a supermarket	Volucio
Find a car park space nearby	Definitely	Unlikely	nowhere
Waiting time until you can deal with symptoms	12 hours	1 day	No wait
You are served by	A <u>trained</u> medicine counter assistant	A pharmacist	You don't
Who is	Not friendly & unapproachable	Friendly & approachable	speak to a health
Asks questions about your symptoms and general health	Yes	No	professional
After speaking with pharmacy staff	You don't understand your symptoms any better and you don't feel like you know the best thing to do to manage them	You understand your symptoms better and you feel like you know the best thing to do to manage them	No different
Cost	£25.00	£15.00	£0
Please tick one box	l would visit pharmacy A	I would visit pharmacy B	I would do nothing

Jacquemet et al. (U. Lorraine - BETA & PSE)
Are CEs demand revealing?

Field experiments comparing hypothetical values from CE with 'real' values

- Health hypothetical and real values differ (Mark & Swait, 2004, *HE*; Ryan et al, 2009, *HE*)
- Environment hypothetical values higher than real, more 'opt-in' (Ready et al, 2010, Land Econ; Carlsson & Martinsson, 2003, JEEM; Lusk & Schroeder, 2004, AJAE)
- Transportation hypothetical values of time are lower than real (Hensher, 2010 *Transport Res.*; Fifer et al, 2014, *Transport Res.*)

but such evidence comes from the comparison between two stated preferences – no reliable benchmark

- To test choices are demand revealing need to know true values
- Induced value experiment (Smith, 1976, AER)
- Monetary rewards are used to induce values for artificial goods preferences are known to, and controlled by, the experimenter.

In the stated pref. literature, IV studies find no difference between hypothetical and real, but responses are not demand revealing (Collins and Vossler, 2009; Jacquemet, Joule, Luchini, and Shogren, 2009; Mitani and Flores, 2009; Taylor, McKee, Laury, and Cummings, 2001; Vossler and McKee, 2006).

3

・ロト ・個ト ・ヨト ・ヨト

Target behavior: an IV discrete choice experiment Luchini and Watson (2014), *Economics Letters*.

Discrete attributes associated with monetary values, and combined to generate alternatives:

Design of the baseline experiment: an overview

Students from University of Aberdeen – 5 real sessions (54 subjects), 4 hypothetical sessions (47 subjects).

- Subjects make nine choices
- Same choices randomised order

	А	В
Colour	Red	Blue
Size	Circle	Square
Shape	Small	Large
Cost	£2	£4

Should pick the one with the highest profit...

Profit =

The open challenge: share of payoff maximizing choices

Real treatment: 60% of choice are payoff maximizing ;

Hyp. treatment: 56% _____

イロト イポト イヨト イヨト

• No significant difference, but strong evidence that DCE is not preference revealing.

This paper: why this happens, and how to define non-monetary institutions that improve preference revelation ?

This paper

Why this happens, and how to define non-monetary institutions that improve preference revelation.

- Limited cognitive ability of subjects:
- Exp. 1 We provide subjects with calculators, and record their use of it.
 - 3 sessions (47 subjects) (3 hypothetical sessions with a calculator were also run as a benchmark).
- 2 Lack of commitment towards the revelation exercise Previous evidence show that a truth-telling oath enhance preference revelation in Vickrey auction, Referendum, BDM and (homegrown) DCE revelation mechanisms
 - Grounded on the **social psychology of commitment**: decisions made along a sequence of actions induce drastic changes in subsequent decision making.
- Exp. 2 Truth telling oath added before the DCE experiment takes place:

"I, the undersigned ... do solemnly swear that, during the whole experiment, I will: Tell the truth and always provide honest answers"

- Subjects told signing is free, participation and earnings are not conditional on signing;
- 3 sessions, identical in all other aspects (44 subjects) all but 1 signed the oath.

(日) (周) (王) (王)

Results

Cognitive ability: IV DCE with a calculator help

	Value			Hyp.	Real	Calc.
	А	в	\neq	N =47	N = 46	N=47
				%	%	%
А	5.5	6.5	1	14.9	5.0	5.2
В	2.5	9.5	7	38.3	33.3	30.8
С	3.5	8	4.5	14.9	27.7	10.3
D	-0.5	7	7.5	76.5	85.2	87.1
Е	8	3	5	72.3	74.1	84.6
F	4.5	3	1.5	72.3	74.1	89.7
G	6	4	2	74.4	81.5	94.9
н	3	0.5	2.5	68.1	79.6	87.2
	8	1	7	74.4	74.1	94.9
				56.3	59.9	64.9

• Calculator used 25% of the time / choice situations. 50% of subjects never use it. When it is used, intensively so. (all the same without monetary incentives)

- Significant increase in payoff maximizing decisions.
- BUT: driven by 'least' problematic choices D \mapsto I (89.8% vs 78.1%).
- No difference for choices between subjects who activate the calculator and those who do not.

Jacquemet et al. (U. Lorraine - BETA & PSE)

Results

Commitment: IV DCE under oath

Truth-Telling oath before the baseline (hypothetical-no calculator) DCE

• Strong and significant improvement in 'problematic' choices $A \mapsto C$ (only those).

- Higher response times, in particular so as to maximize payoff in problematic choices (21s. vs 12s).
 - Observed as well in Real, but with now behavioral consequences

Oath

%

59.1

86.4

84.1

90.9

77.3

65.9

81.8

77.3

79.5

78.3

Robustness treatment I - "Task oath"

Does the oath works though fostered cognitive effort ?

• Task oath, same form but reads: "*I*, ..., the undersigned do solemnly swear that during the entire experiment, *I* will faithfully and conscientiously fulfil the tasks that I am asked to complete to the best of my skill and knowledge"

Slight increase, driven only by choice D. Significant increase in response times (237s. vs 157s.).

(日) (同) (三) (三)

Robustness treatment II - "Oath of office"

Task oath not solemn / sound enough ?

• Oath of office, same form but reads: "*I*, ..., the undersigned do solemnly swear that during the entire experiment, *I* will faithfully and conscientiously fulfil my duties to the best of my skill and knowledge"

• Slight increase, driven only by non problematic choices. Significant increase in response times (213s. vs 157s.).

イロト イポト イヨト イヨト

We confirm previous evidence that a truth telling oath (drastically) improves preference revelation based on DCE.

As compared to previous evidence:

- We contrast preference revelation according to whether stated preferences have monetary consequences or not;
- We use an IV setting, allowing to contrast revealed and true underlying preferences.

The IV setting reveals a huge discrepancy between true and DCE stated preferences – not related to cognitive limitations.

Perhaps more importantly: commitment to the truth, rather to a higher cognitive effort, is achieved by a truth telling oath.

Main open question: inference to homegrown values.

イロト 不得 トイヨト イヨト

Conclusion

- COLLINS, J. P., AND C. A. VOSSLER (2009): "Incentive compatibility tests of choice experiment value elicitation questions," *Journal of Environmental Economics and Management*, 58(2), 226–235.
- JACQUEMET, N., R.-V. JOULE, S. LUCHINI, AND J. SHOGREN (2009): "Earned Wealth, Engaged Bidders? Evidence from a second price auction," *Economics Letters*, 105(1), 36–38.
- LUCHINI, S., AND V. WATSON (2014): "Are choice experiments reliable? Evidence from the lab," *Economics Letters*, 124(1), 9–13.
- MITANI, Y., AND N. E. FLORES (2009): "Demand Revelation, Hypothetical Bias, and Threshold Public Goods Provision," Environmental & Resource Economics, 44(2), 231–243.
- TAYLOR, L. O., M. MCKEE, S. K. LAURY, AND R. G. CUMMINGS (2001): "Induced-value tests of the referendum voting mechanism," *Economics Letters*, 71(1), 61–65.
- VOSSLER, C. A., AND M. MCKEE (2006): "Induced-Value Tests of Contingent Valuation Elicitation Mechanisms," *Environmental & Resource Economics*, 35(2), 137–168.

イロト 不得 トイヨト イヨト

SDU and long-term care insurance First findings from an empirical analysis based on Canadian data.

Michel Grignon¹

¹McMaster University, Economics and HA&S

March 2015

ヘロト ヘヨト ヘヨト

프 🕨 🛛 프

Outline

- Interpretations of SDU
- 3 What do we know?

イロト イポト イヨト イヨト

ъ

State Dependent Utility

- Does Marginal Utility of Consumption change with health?
- How can we approach the question empirically? Challenges.
- Implications for pensions and health insurance (mostly public programs)

ヘロト ヘアト ヘビト ヘビト

ъ

A vivid illustration Cancer Ward, Solzhenitsyn

""Read? Why should I read? We'll all kick the bucket soon." Bone-chewer's scar twitched. "That's the point! If you don't hurry you'll have kicked the bucket before you've read it. Here you are, quick!""

< ロ > < 同 > < 三 > .

Implications for policy

- Insurance or pensions as income transfers across states of the world
- If MUC lower in unlucky state, partial insurance is optimal (could explain markets yield partial rather than full insurance, as rational rather than market failures)
- If MUC higher in unlucky state, more than complete insurance (transfer) might be fine (contra moral hazard) and lack of provision is due to market or political failure
- If MUC invariant across states, standard results of expected utility theory apply

< ロ > < 同 > < 三 >

The case of long-term care insurance

- Assumption that dependent do not need anything but care
- 2 No empirical ground
- Sometimes true (severe dementia), but not always.
- Question is: access motive only (catastrophic insurance) or protection of consumption?

< ロ > < 同 > < 三 >

the utility model of SDU

 $U(C,S) = \gamma_0 \cdot S + (1 + \gamma_1 \cdot S) \cdot u(C)$

where C is consumption, S is sickness (e.g., a binary variable taking the value of 1 if the individual is sick and 0 otherwise). γ_0 is the effect of sickness on the level of utility (expected negative)

 γ_1 is the effect of sickness on the slope of the relationship between consumption and utility. The latter is the parameter of interest: a positive γ_1 indicates that the marginal utility of consumption is greater when sick.

イロト イポト イヨト イヨト

Negative SDU Health and Consumption are complement

Positive SDU Health and Consumption are substitutes

Implications for LTC insurance More formal

If $u(C) = \frac{C^{\frac{1}{\alpha}}}{\frac{1}{\alpha}}$, α risk aversion, the optimal level of coverage for an insurance with no moral hazard is: $b^* = \frac{C_h}{H} \cdot ((1 + \gamma_1)^{\frac{1}{\alpha}} - 1)$. If $\gamma_1 = 0$ the optimal coverage rate will be 100% whatever the value of α (there is no moral hazard), but if $\gamma_1 = 0.1$, the optimal coverage rate will vary from 107% to 115% for values of α comprised between 4 and 2.

イロト 不得 とくほ とくほ とう

Literature on health-related SDU

- Introspection: Not conclusive but most think it is negative.
- Empirical: Revealed preferences challenging
 - No control in observational studies
 - Avenue: Critical Illness Insurance (Longo and Grignon).
- Stated preferences (1): Viscusi. Negative for high risks (death), positive in the small.
- Stated preferences (2): Finkelstein et al. (2008)

イロト イポト イヨト イヨト

Empirical approach

$$U_i = \delta_0 + \delta_1 \cdot (S_i * C_i^{\delta_2}) + \delta_3 \cdot S_i + \delta_4 \cdot C_i^{\delta_2} + \delta_5 \cdot Z_i$$

where Z_i is a set of controls (taste shifters), would allow us to measure the effect of health on the change in utility brought about by a small change in consumption (marginal utility) through the sign of δ_1 . A positive coefficient would show positive sickness dependent utility (S is sickness, not good health), whereas a negative value would show negative sickness dependent utility and a value non-significantly different from 0 would indicate sickness-independent marginal utility of consumption. We would also be able to infer a value for γ_1 as

$$\hat{\gamma_1} = \frac{\hat{\delta_1}}{\hat{\delta_4}}$$

イロト イ理ト イヨト イヨト

Data and variables

- NPHS, 9 waves, older than 50 and not in LF: 6,600 unique individuals, 2.36 waves each.
- Pappiness for utility. Two variables (positive and negative)
- Health: number of chronic conditions (2 lists), IADL, sensorial limitations, TTD
- Permanent income as a proxy for consumption (!) (cannot retrieve δ_4 , auxiliary equation.

ヘロン 人間 とくほ とくほ とう

Identification assumptions

- No error in mapping (parametric)
- No systematic differences in expressing happiness across groups of sickness and consumption (out of labour force).

< ロ > < 同 > < 三 > .

findings

Table: Main estimates							
Utility	Health	$\hat{\beta_1}$	P > t	$\hat{eta_3}$	P > t	$\frac{\hat{\beta}_1}{\hat{\beta}_4}$	
Binary	7 conditions	-0.010	.56	-0.017	.06	-0.114	
Binary	19 conditions	-0.000	.97	-0.017	.02	-0.004	
Binary	IADL	+0.005	.45	-0.008	.06	+0.062	
Binary	Sensorial	+0.019	.49	-0.058	.00	+0.304	
Score	7 conditions	+0.005	.82	-0.029	.02	+0.057	
Score	19 conditions	+0.008	.54	-0.025	.00	+0.083	
Score	IADL	+0.009	.37	-0.014	.04	+0.086	
Score	Sensorial	+0.047	.17	-0.080	.00	+0.629	
CESD	7 conditions	+0.014	.91	-0.165	.02	+0.019	
CESD	19 conditions	+0.103	.13	< =0.188	< ≡ >.00 >	∍+0 :171	

Michel Grignon

Chaire Santé

Why is Canada (perhaps) different than the US?

- It is tough to be poor in the US anyway, healthy or not
- It is tougher to be sick when rich in the US than in Canada
- Consumption is affected, for a given level of permanent income, more in the US than in Canada.

< ロ > < 同 > < 三 > .