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Abstract

How do governments respond to other governments when providing a global public good?

Using data from 2007-2014 on medical research funding for infectious and parasitic diseases,

we examine how governments and foundations in 41 countries respond to funding changes

by the US government (which accounts for half of funding for these diseases). Because

funding across governments might be positively correlated due to unobserved drivers they

have in common, we use variation in the representation of research-intensive universities on

US Congressional appropriations committees as an instrument for US funding. We find that

a 10 percent increase in US government funding for a disease is associated with a 2 to 3

percent reduction in funding for that disease by another government in the following year.
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1. Introduction

Knowledge generated by a firm’s research and development (R&D) activities can be a

public good, limiting the ability of the firm to fully appropriate the benefits of its investment

(Bloom et al., 2013). As a result, firms tend to invest less money than is socially optimal. To

correct for the market failure, governments use patents, innovation prizes, R&D tax credits,

and direct funding of R&D through grants. The resulting innovation or knowledge can

cross national borders, potentially causing other governments to alter their own innovation

policies. We examine whether spending on basic medical research by one government affects

spending by others. Economic theory suggests that it should (Olson and Zeckhauser, 1966;

Lee, 1988; Nordhaus, 2015), but we have little evidence for this phenomenon outside of

national defense spending (Murdoch and Sandler, 1984; Sandler and Murdoch, 1990) and

environmental regulation (Murdoch and Sandler, 1997).

This is the first economic analysis to investigate whether governments respond strategi-

cally to one another in funding basic medical research. We focus on infectious and parasitic

diseases because of the enormous impact of the diseases on human welfare.3 We have data on

research funding for 15 infectious and parasitic diseases across 41 countries and organizations

from 2007 to 2014 collected annually by the non-profit Policy Cures. We are not aware of a

similarly comprehensive source of medical research funding data for other diseases.

Identifying a strategic response by a funder is not straightforward. Two funders might ex-

perience the same economic shock to their budgets and adjust funding in the same direction.

Also, two funders might prioritize the same diseases if they both consider disease burden or

scientific productivity. To identify a strategic response, we need an exogenous shock to one

budget to observe the response by other funders. We use the composition of United States

(US) Congressional appropriations committees as an instrumental variable to address the

endogeneity of government research funding. The US National Institutes of Health (NIH)

accounted for more than half of global government and non-profit research funding for infec-

tious and parasitic diseases between 2007 and 2014. Congress sets the NIH budget annually,

and the budget fluctuates as the composition of Congress changes. When Congressional

appropriations committees have more members representing research-intensive universities,

3Infectious diseases were four of the top five priorities (nutrition being the fifth) for the Copenhagen Con-
sensus III of 2012, during which an expert panel, including four Nobel laureates, set priorities for advancing
global welfare (http://www.copenhagenconsensus.com/copenhagen-consensus-iii/outcome). Further-
more, with a philosophy of every life having equal value and of evidence-driven investment, the Gates
Foundation – the largest in the world – spends most of its resources on medical care, especially in the
infectious and parasitic disease areas.
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US government research outlays tend to be higher. This exogenous change allows us to test

whether other governments adjust their spending in response.

We find that a 10 percent increase in US government outlays for medical research is

associated with a 2 to 3 percent decrease in outlays by other funders (i.e., other government

agencies or non-governmental organizations [NGOs]) in the following year. We also find that

changes in US funding for a given disease typically influence other funders only if the other

funders are already funding the disease. Government agencies tend to fund diseases with a

high local burden and respond to US outlays more intensely for such diseases. In contrast, it

is rare for a government agency to stop funding a disease entirely in response to an increase

in US outlays, or begin funding a new disease in response to a decrease in US outlays. In

other words, changes in US outlays primarily affect the intensive margin rather than the

extensive margin for other funders.

The negative relationship between US government funding for a disease and funding by

other governments, NGOs, and foundations is consistent with free riding. According to the

World Health Organization:

“Failure to provide global public goods is linked to collective action problems

such as ‘free-riding.’ The free-rider term describes a situation when no indi-

vidual is prepared to pay the cost of something that others may be expected

to benefit from; instead, all hope that someone else will pay for it and they

will benefit for free. This is particularly an issue for research and development

(R&D) into medicines to combat neglected diseases, which requires high-levels of

investment.”(World Health Organization, 2016)

Free-riding is not the only explanation for this relationship, however. A negative relation-

ship in funding outlays is also consistent with optimal reallocation. We cannot distinguish

between the two. Regardless of whether we refer to it as free riding, optimal reallocation, or

crowding out, it is important to be aware that when the US government increases outlays for

research on a disease by one dollar, the global increase (net of foreign reductions) is smaller.

We estimate an increase in net international outlays of $.70 to $.80 when the US government

allocates one additional dollar to research on a disease.

2. Related literature

US drug makers and government officials sometimes complain that when other countries

cap drug prices, they are free riding on the US market (Scherer, 1993). They argue that
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high prices in the US provide the demand that encourages much commercial drug develop-

ment. However, despite largely unregulated drug prices, US-based firms or inventors are not

disproportionately responsible for new molecular entities (Keyhani et al., 2010). However,

with low trade and knowledge barriers, the location of invention may be irrelevant. What

matters, rather, is the global profit potential that a firm expects, and this should not depend

on the country in which the firm has its headquarters or operates a research laboratory.

The potential for free riding is one justification for the expansion of intellectual property

requirements in international trade agreements; that is, each country would prefer other

countries to provide patent protection to induce innovation. While intellectual property

rights can reduce free riding and improve patient welfare in the long run, patient welfare

can diminish in the short run due to rising drug or vaccine prices (Chaudhuri et al., 2006),

especially for new products with little competition (Duggan et al., 2016). Furthermore, even

diseases prevalent around the world will not receive much commercial investment if nearly all

of the people suffering from the diseases live in poor countries (Kyle and McGahan, 2012).

Intellectual property rights might be ineffective as an incentive mechanism to support medical

research funding for such diseases, and thus motivate government, NGO, or foundation

research funding. In contrast to discussion about intellectual property rights, there has been

relatively little discussion of how national policies on research funding may be subject to

free riding or require coordination. This is the first study to examine strategic interaction

among governments in funding basic medical research.

Government R&D funding has been shown to crowd out private investment. Govern-

ment R&D funding can crowd out private funding if government funding bids up the wages

of scientists and engineers, which makes private investment in innovation more expensive

(Goolsbee, 1998). Conversely, government funding can complement private investment if

governments invest in early-stage research, while private investors fund later-stage devel-

opment (Toole, 2007; Blume-Kohout, 2012). The complementarity of government research

and private development for medical research funding has been more evident for early stage

(Phase I) clinical trials rather than later, costlier (Phase III) trials (Blume-Kohout, 2012).

However, it is difficult to find a clean econometric experiment to identify these effects (David

et al., 2000).

In addition to investment crowd out, government funding may affect private charity

spending (Andreoni and Payne, 2011). During the Great Depression, government charita-

ble programs expanded, while private charities reduced funding for the poor and instead

devoted funding to other causes (Roberts, 1984; Gruber and Hungerman, 2007). Murray
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(2013) recommended that governments consider the role of charities in scientific funding:

“In determining their own funding strategies, they must no longer assume that their funding

is the only source in shaping some fields of research while recognizing that philanthropy may

ignore other important fields.” Outside of medical research, previous work has examined

how government funding affects the private provision of health insurance. Private health

insurance coverage fell following the Medicaid expansions between 1987 and 1992 (Cutler

and Gruber, 1996) and between 1996 and 2002 (Gruber and Simon, 2008). With public pro-

vision of health insurance, a smaller share of employees adopted employer-based insurance,

and employers were less generous in providing insurance.

Governments also interact strategically at the local and state levels (Brueckner, 2003).

Spending across neighboring state governments is positively correlated, perhaps due to herd-

ing (Case et al., 1993). Furthermore, tax policy is positively correlated between neighboring

local governments due to competition for mobile capital (Mintz and Tulkens, 1986). In con-

trast to the positive correlation found in these contexts, we find a negative correlation in

spending across governments when accounting for endogeneity, suggesting that R&D spend-

ing is a public good.

Although medical research is supplied and used globally, most previous studies have fo-

cused on NIH funding because the NIH is the largest funder of US medical research and

because the US government makes NIH data available. However, one shortcoming of an-

alyzing only NIH data is the possibility of biased estimates depending on whether other

public spending is positively or negatively correlated with NIH funding outlays. If other

governments devote resources to diseases in a pattern similar to that of the NIH, and if

we omit the contribution of funding from other governments, then we will overestimate the

effect of NIH spending. However, if an increase in spending by the NIH for a particular

disease triggers a reduction by other public funders, then we will underestimate the effect

of NIH spending. Scientific research is global and scientific efforts across countries surely

influence one another, either as complements or substitutes. For example, when the George

W. Bush administration prohibited federal funding for the development of and research on

new human embryonic cell lines, US researchers increased collaboration with international

researchers (Furman et al., 2012). One implication of our paper is to highlight the impor-

tance of accounting for strategic interactions when assessing the productivity of research

funding in a single country.
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3. Theory

Governments and foundations allocate R&D funding based on health needs and scientific

opportunity. According to NIH leaders, “NIH believes that a process that includes multiple

measurements of public health needs, but is also informed by scientific opportunity, allows

us to fund the best science” (Rockey and Wolinetz, 2015). Hence, we model outlays as a

function of disease burden and scientific knowledge (Lichtenberg, 2001).

We extend the previous framework by including multiple funders and a strategic response

by smaller funders to the largest funder. For example, a European government funder might

consider outlays by the NIH when choosing to fund a given disease. After all, knowledge

generated by NIH-funded research is generally not restricted to the US population, because

NIH policy requires recipients of NIH grants to make their papers available at no cost to the

public.4

Funder f chooses outlays xfd for disease d based on the disease burden that can be

alleviated Bf
d , scientific knowledge Sd, and the funder’s budget Y f . A funder distributes

outlays between research that benefits people globally xfd and outside activities that are

strictly local to the funder of . The probability of developing a new treatment is p(
∑
f

xfd , Sd)

which is increasing in scientific knowledge S and concave in the outlay x.5

The expected benefit to funder f of outlay xfd is the probability of discovery p multiplied

by the disease burden alleviated Bf
d . The benefit to a funder includes other funders’ outlays,

but not other funders’ disease burdens. Therefore, the optimization problem for a funder is:

max
xf
d

∑
d

Bf
dp(x

f
d , Sd) + h(of )

s.t. :
∑
d

xfd + of = Y f
(1)

In the appendix, we employ a simple model with two periods and two funders, one of

which is a dominant funder (for example, the NIH). We solve for comparative statics and

generate three testable hypotheses.

We predict that outlays will be positively correlated with disease burden and scientific

knowledge, though outlays will not necessarily be proportional to disease burden and scien-

4See NIH Public Access Policy
5We assume funders have the same scientific productivity for the same disease regardless of which funder

it is. Approximately 90 percent of the outlays in our sample come from the US, the United Kingdom (UK),
and France, and we think it is a reasonable assumption for this set of countries. Our assumption may be
less valid for countries with a more limited pool of scientific talent.
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tific knowledge.

Hypothesis 1. Diseases tend to receive greater outlays from a funder if there is a greater
disease burden, if there is more scientific knowledge, and if the funder has a larger budget.

Formally, ∂xf∗d /∂B
f
d > 0, ∂xf∗d /∂Sd > 0, and ∂xf∗d /∂Y

f > 0.

The remaining hypotheses concern how outlays by one funder influence funding by an-

other funder.

Hypothesis 2. Greater outlays for a disease by one funder will reduce outlays for the disease
by another funder.

Formally, for dominant funder f and a fringe funder i, ∂xf∗d /∂x
i∗
d < 0. If the dominant funder

increases outlays for a disease, fringe funders reduce outlays. The fringe funders spend more

on other diseases and on the local (outside) good as described below.

Hypothesis 3. Greater outlays for a disease by one funder increase outlays by the other
funder for other purposes, including other diseases and the local (outside) good.

Formally, ∂xf∗d′ /∂x
i∗
d > 0 and ∂xf∗o /∂x

i∗
d > 0. When the dominant funder increases funding

for a disease and the other funder reduces funding (Hypothesis 2), some of the funding goes

to the local (outside) good and we might characterize it as free riding. However, some of

the funding goes to other diseases. Hence, if the dominant funder “over funds” a disease

(perhaps due to political pressure), then other funders shift resources to other diseases.

These three hypotheses motivate our empirical examination. One of our challenges is that

there could be positive correlation in outlays across funders due to unobserved factors such

as taste or mismeasurement in our disease burden and scientific knowledge data. We need

a shock to one funder’s budget to motivate this funder to change its outlays (Hypothesis

1) so that we can observe the change in the other funder’s outlays (Hypothesis 2). We

will not directly estimate whether governments are maximizing social welfare, but we will

demonstrate how governments respond to one another.

4. Methods

Our unit of observation is a disease-funder-year. The model includes both US and global

disability-adjusted life years (DALYs) as measures of disease burden, as well as scientific

publications. Recall that NIH leaders wrote that “NIH believes that a process that includes

multiple measurements of public health needs, but is also informed by scientific opportunity,
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allows us to fund the best science.” Furthermore, “NIH funding levels relate to US and global

deaths and disability-adjusted life years (DALYs) – a measure that quantifies the number of

healthy years of life lost due to morbidity or premature mortality caused by disease” (Rockey

and Wolinetz, 2015).

4.1. Identification

Two factors bias against finding a negative relationship between outlays across funders.

The first identification challenge is that if the same unobserved factors motivate funders,

then outlays across funders might move together. We control for common drivers, such as

scientific publications, global burden of a disease, and national income. However, unobserved

factors could motivate greater spending by both US and non-US funders. We need an

instrumental variable that shifts US funding for a given disease in a given year but that

does not directly change funding by non-US agencies, only affecting their funding indirectly

through US funding.

Our instrumental variables strategy uses the political composition of the US Congress,

which sets the overall NIH budget in addition to setting other global health priorities.6

Changes in Congressional committee chairmanships influence total federal spending (Co-

hen et al., 2011). Likewise, Congressional representation affects medical research funding.

Previous work has documented the importance of academic earmarks, which are budgetary

carve-outs by members of Congress directed to specific institutions located in their dis-

tricts (de Figueiredo and Silverman, 2006). Researchers located in districts represented by

members of the US House Appropriations Committee received more NIH grants than those

without such representation (Hegde and Mowery, 2008; Hegde, 2009).7

The validity of our approach rests on the assumption that US political forces that shift

NIH funding through changes in the composition of Congressional appropriations committees

are unrelated to funding decisions in other countries. That is, the appointment to the

House appropriations committee of a representative from a state with a large number of

research-intensive universities (who then argues for a larger NIH budget to benefit the local

6See Yamey et al. (2017) for an overview.
7A “committee on committees” for each party determines membership on Congressional committees. The

committee gives priority to more senior members. New members are given priority according to past service
in Congress or as governor. Other new members are sorted by random drawing. Members are generally not
permitted to serve on multiple powerful committees. For example, a Senator serving on the Appropriations
committee would give up her position in order to receive a position on the Armed Services committee. The
committee membership recommendations are voted on within the party, and then in a simple resolution by
all members.
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constituency) is independent of the budgetary and funding choices in other countries. If our

approach does not adequately address the identification challenge, then our estimates will

underestimate the negative correlation and thus the strategic response of non-US funders.

For example, if all countries change political control in the same direction, then funding

across countries will be positively correlated. Hence, our estimates could be a lower bound.

The second identification challenge is that many funders have small budgets. They often

spend nothing on a given disease and thus are limited in how they can respond to an increase

in US outlays for that disease (i.e., they cannot spend less than zero). We therefore include

a specification that focuses on the intensive margin, or changes conditional on spending

anything, as well as a specification that looks only at the decision to allocate any funding at

all. Again, our estimates might underestimate the effect and be a lower bound.

4.2. Estimation

We estimate outlays from a non-US funder f for a disease d in year t with the following

specification:

Log Non-US Funder Outlayd,f,t = β0 + β1Log US Outlayd,t−1

β2Log Local Disease Burdend,c,t +

β3Log Disease Burden in Poor Countriesd,t +

β4Infectious except HIVd + β5HIV Indicatord +

β6Log Number of Publications to Dated,t +

β7Log GDPc,t−1 + φf + εd,f,t

(2)

The explanatory variables include the disease burden, scientific knowledge, and other

control variables. The burden of disease in poor countries is net of the local burden for the

disease, where poor countries are defined as those listed as low income and lower-middle

income by the World Bank.8 We measure scientific knowledge as the number of scientific

publications to date. We also control for whether the disease is infectious or parasitic.

Because HIV is unique in its global and rich-world disease burdens, as well as the medical

research funding it has received, we include a separate indicator for HIV. Finally, we include

8http://data.worldbank.org/country
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a funder fixed effect to account for time-invariant heterogeneity across funders.

Our main variable of interest is lagged US funding, which might depend on unobserved

factors that also drive non-US funding decisions, as discussed previously. We address this

endogeneity using two-stage least squares, where the first stage is:

Log US Outlayc,t,d = α0 + α1Research Universities per Appropriations Membert−2

+α2Log Local Disease Burdend,c,t

+α3Log Disease Burden in Poor Countriesd,t

+α4Infectious except HIVd + α5HIV Indicatord

+α6Log Number of Publications to Dated,t

+α7Log GDPc,t + φf + εd,c,t

(3)

In the first stage, the dependent variable is the annual US outlay for disease d in year t.

We transform the dependent variable into logs (plus one because many of the observations

are zero). The instrumental variables we exclude from the second stage are the number of

research-intensive universities represented by Congressional appropriations committee mem-

bers.

The assumed timing in our analysis is as follows. The composition of the Congressional

appropriations committees in year t influences the NIH budget in the next fiscal year, t+ 1.

Researchers submit proposals and the NIH selects recipients, with allocations beginning in

t + 2. Other governments observe the NIH budget and funding decisions in t + 1, choose

recipients for their funding in t+ 2, and make outlays in t+ 3.

We also estimate alternative specifications. In one specification, we include not only

other non-US government agencies but also NGOs and private foundations. The approach is

the same as that described above, except with more observations. In another specification,

we add an interaction term between the local disease burden and US outlays. In this way,

we examine whether government agencies were more responsive to US outlays for diseases

with a heavy local burden. This allows us to use the heterogeneity in disease burden across

countries to examine responses to US outlays at the intensive margin. To examine responses

at the extensive margin, we replace the magnitude of a government agency’s outlays with an

indicator variable for whether the agency has any outlay for that disease. We include five

other specifications to test the robustness of our results. We describe the robustness checks
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in Section 6.3 and include the tables in the appendix.

5. Data

To study how governments interact in medical R&D outlays, we need data on outlays by

multiple government agencies, NGOs, and foundations for each disease and year. Although

the NIH provides a long time-series of funding at the project level, collecting similar infor-

mation from funders in other countries is challenging. Fortunately, Policy Cures collects

and classifies funding outlays by disease, as described below. We also include data on the

burden of disease at the country level, and data on scientific knowledge for each disease.

We use data on the composition of Congressional appropriations committees as a source of

exogenous variation in US outlays.

5.1. Funding data

We focus on infectious and parasitic diseases9 because of the availability of high-quality

data on funding from all relevant governments and foundations. Policy Cures collects the

G-FINDER data using an annual survey. The survey covers public (government) and private

(foundation and NGO) funding for 35 neglected diseases, including both infectious and par-

asitic diseases that predominantly affect people in developing countries. The annual survey

defines neglected diseases as those for which treatments are needed in developing countries

and for which the commercial market is insufficient to attract R&D spending by private

industry.

Each record in the G-FINDER database includes the disease name, product category,

funder name, funder type, home country of the funder, funding amount, year, and recipient

information. A key contribution of the annual survey is that it allows a more accurate

classification of spending by disease than a survey based on keywords. Furthermore, the

G-FINDER database avoids double counting, such as funding that flows from the Gates

Foundation to another organization, which then funds research. For more details on the

G-FINDER data, see previous studies such as Moran (2010) and Røttingen et al. (2013).

9Infectious and parasitic diseases are of interest for many reasons, not only because of the availability of
data. First, these diseases are neglected by the private sector, because the disease burden is concentrated in
poor countries, where the profits are low (Kremer, 2002). The case for government intervention is strong,
because the social burden of these diseases is substantial, and government-funded research is unlikely to
crowd out private investment. Second, infectious and parasitic diseases tend to cross borders. This suggests
that the benefit of curing a disease is not limited to a single country, but rather reaches all countries to
which the disease might spread.
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We aggregate the G-FINDER data to the disease-funder-year level and adjust all outlays

to 2013 US dollars. We set the outlay to zero for any disease-country-year and disease-

funder-year that is missing in the G-FINDER database, so the data are fully rectangular

at the disease-country-year level and disease-funder-year level. Thus, we have a sample of

funders that ever funded one of the diseases between 2007 and 2014.

5.2. Disease burden

We use a standard measure of disease burden from the World Health Organization’s

(WHO) Global Burden of Disease project. The WHO reports the burden of disease in terms

of DALYs lost, an estimate of years of life lost due to premature mortality and years of life

lost due to time lived in less than full health. The WHO reports burdens by disease and

country for the years 2000 and 2012. We linearly impute values between 2000 and 2012. As

a robustness check, we also use country-year-disease mortality data from the Global Health

Data Exchange’s Global Burden of Disease Study.

We match the disease burden data to the funding data at the disease level. Some diseases

in G-FINDER are not included in the disease burden data and vice versa, so our sample

consists of 15 diseases.10 Neither Ebola nor Zika are in our sample because the burden of

disease datasets do not provide separate breakdowns for either one, and Ebola was only

introduced in the G-FINDER data in the Policy Cures 2014 survey.11

5.3. State of science

Scientific knowledge about a disease is another potential determinant of research invest-

ment for the disease. Funders might devote more money to diseases with a more advanced

state of scientific knowledge, perhaps because such funding is more likely to lead to success-

ful treatments. Furthermore, the existence of many published scientific papers reflects the

interest and qualifications of academic researchers, who might submit more and better grant

proposals.

We include a control variable for scientific knowledge which we measure as the number

to date of publications about a disease indexed in the PubMed database. We include only

publications that are coded in PubMed as journal articles, excluding letters, editorials, and

10For example, rheumatic fever, included in the G-FINDER data, was not listed as a specific item in the
Global Burden of Disease data and thus not included in our sample.

11Recent analysis by Fitchett (2016) shows that funding for Ebola research increased substantially between
2014 and 2015, when the outbreak peaked. Though accounting for a very small share of total funding from
1997 to 2013, the European contribution for Ebola research exceeded American funding from 2014 to 2015
when American funding declined, consistent with the strategic responses we document in this paper.
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reviews. Each article in PubMed includes keywords (or Medical Subject Headings) in its

listing, which we use to assign to articles to diseases. Specifically, we use the “Entrez” tool

from Biopython, an open-source package written in Python, to search the PubMed database

for each disease and to extract information on all publications for which the disease is listed

among the Medical Subject Headings. Our approach relies on the accuracy of the algorithm

used by the National Library of Medicine to assign Medical Subject Headings.

As a robustness check, using data from IMS Health (now known as Quintiles IMS), we

include a measure of recent drug innovation as an explanatory variable. We define recent

innovation as the number of new treatments introduced for a disease since 1987. Diseases like

HIV have experienced significant improvements in available treatments, whereas innovation

in other diseases (such as malaria) has been less dramatic.

5.4. Congressional data

To construct our instrumental variables (as described in Section 4.1), we use data on the

composition of the House and Senate appropriations committees (Stewart III and Woon,

2017), as well as data on research-intensive universities. The latter are the 115 univer-

sities classified as having the highest research activity (known as “R1” universities) in the

Carnegie Classification of Institutions of Higher Education in 2015 (Center for Postsecondary

Research, 2016). We count the university if it was in the state of the member of Congress,

even if it was not in the member’s district, given that gerrymandering sometimes divides

university communities and alumni of the university located throughout the state tend to

support funding for the university (Chatterji et al., 2017).

5.5. Other country-level data

We also use country-level information on gross domestic product (GDP) per capita,

downloaded from the World Development Indicators database. We adjust the amounts for

purchasing power parity and inflation (2011 US dollars).

6. Results

6.1. Summary statistics

The sample includes 15 diseases: 6 infectious and 9 parasitic diseases for which we had

data on both funding and disease burden. The data sample includes the period from 2007 to

2014 and 398 funders: 259 government agencies and 139 NGOs. The 41 countries include 6 in

Africa, 8 in Asia, 2 in Australia, 17 in Europe, 3 in North America, and 5 in South America.
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For a given disease in a given year, a funder allocated a mean of $200,000. Aggregating to

a country level generates a mean of $1.5 million (Table 3).

Diseases with a greater burden and more scientific knowledge tend to have greater funding

outlays (consistent with Hypothesis 1). For example, HIV/AIDS has the greatest global

disease burden, number of scientific publications to date, and global outlays (Table 1). The

global outlays for HIV are predominately from government agencies (87% of funding) and the

remainder from NGOs and foundations. For a typical disease, government agencies account

for two thirds of funding.

Funding for neglected diseases by the US government is much higher than funding by

other governments, both in absolute terms (Table 2) and relative to national income (Figure

1) (consistent with Hypotheses 2 and 3). The US government accounted for 59 percent of

the total funding outlays for the 15 diseases in our sample, with the majority of that funding

coming from the NIH (Table 2). Furthermore, measured as a share of national income, US

funding for neglected diseases is at least triple that of any other country except the UK

(Figure 1).

Funding outlays by other countries are not necessarily proportional to the number of

scientific publications and burden of disease. For example, the government of Brazil provides

less medical research funding for HIV/AIDS than for dengue, leishmaniasis, and malaria,

each of which has a smaller burden of disease in Brazil than does HIV/AIDS (Table 1).

One interpretation of the pattern is that Brazil may spend less on HIV/AIDS because it

benefited from the funding for HIV/AIDS provided by the US. Indeed, the US heavily

funded HIV/AIDS medical research, which allowed other countries to focus on other diseases

of local importance. Hence, research on dengue received more outlays in Latin America and

the Caribbean than did HIV/AIDS (consistent with Hypothesis 3).

6.2. Regression results

Recall that the dependent variable is the log of disease-funder-year outlays. Many of the

independent variables are also in logs, so their coefficients are elasticities. In the tables with

the regression results (beginning with Table 4), we include both the instrumental variable

results and the ordinary least squares results. We present regression results for government

agencies only (Table 4) and for both government agencies and private foundations combined

(Table 5). There are 15 diseases, 8 years, and 398 funders, for a total of 47,760 observations.

One year is lost due to lagged values when estimating the regressions, so in the regressions

the number of observations is 41,790 (with all funders) or 27,195 (with only government

agencies).
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The first-stage of the regression results yields positive, statistically significant coefficients

on the average number of research-intensive universities represented by Congressional ap-

propriations committee members (Tables 4-7). The results suggest that a higher number

of research-intensive universities represented on a Congressional appropriation committee

yields higher research funding. This positive relationship between Congressional representa-

tion and outlays is also evident in Figure 2.

The sign on US government outlays differs between the ordinary least squares (OLS)

and instrumental variable specifications (Table 4). Whereas the OLS results have a positive

coefficient on US outlays, the instrumental variable specification gives the opposite result.

The difference in sign suggests that unobserved factors drive R&D in both the US and

other countries and create a spurious positive correlation in the OLS. Sargan test results

indicate that the instrumental variables are uncorrelated with the residuals, and therefore

are acceptable instruments. When the endogeneity of US outlays is accounted for, a 10

percent increase in US government outlays is associated with a decrease in outlays by funders

in other countries in the following year (consistent with Hypothesis 2). The decrease ranges

from 2 percent (Table 5) to 3 percent (Table 4).

Disease burden appears to influence outlays, consistent with Hypothesis 1. A 10 percent

greater disease burden is associated with 1 percent greater outlays by the US government

and by other governments. Likewise, outlays relate to scientific knowledge. A 10 percent

greater number of scientific articles to date for a disease in a year is associated with a 10

percent increase in US government outlays. For government funders from other countries,

the effect is half as large (Table 4). The coefficient on the HIV/AIDS indicator variable is

positive and significant (Table 4). This is not surprising because HIV/AIDS receives more

US funding than all other infectious and parasitic diseases combined (Table 1).

The sign on the coefficient for lagged GDP per capita is not statistically significant in

most of the regression results. Because we include funder fixed effects, the coefficient on

GDP per capita captures within-country variation over time. Normally, we would expect

spending to increase when a country’s economic performance is strong. The coefficient could

plausibly be negative if outlays are intended as economic stimuli, but again, are typically

not statistically or economically significant.

Table 6, shows the results when we interact the local disease burden with US outlays.

The results suggest that funders with a large local disease burden are highly responsive to

changes in US outlays for that disease, while funders with no local disease burden react little

(the coefficient on US outlays alone was statistically and economically insignificant). In
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general, diseases with small local burdens receive less funding, so the potential for a negative

response is limited.

We also examine the extensive margin; that is, whether other funders start or stop funding

a disease in a given year in response to changes in US outlays for the disease in the previous

year. The dependent variable for the analysis summarized in Table 7, was an indicator

variable for whether outlays are positive. We observe a negative relationship between US

outlays and subsequent starting or stopping of outlays by other funders for a given disease,

but the effect is small. Countries are unlikely to start or stop funding for a disease entirely

based on US medical research funding actions. Hence, the effects of US outlays seem to

occur on the intensive margin (Table 6) rather than on the extensive margin (Table 7).

6.3. Results from robustness checks

We conduct five robustness checks (Appendix A). First, we include a count of the number

of treatments introduced since 1987 to examine how the availability of existing treatments

influence funding outlays. The availability of treatments is associated with higher levels of

funding (Table A.8). Perhaps these diseases receive more funding because there is a record of

success in developing treatments for these diseases. Regardless of the reason for the positive

relationship between the number of treatments and amount of funding, the results for the

response to changes in US outlays are consistent with the results of the main analysis.

Second, rather than using the composition of Congressional appropriations committees

as the instrumental variable, we use the NIH budget. We subtract from the budget the

funding for the disease in question (although it is a small share of the total, we want to

avoid having outlays for that disease on both the left and the right sides of the equation).

The rationale for the validity of this instrument is the same as that for the composition of

the Congressional appropriations committees; that is, disease funding in the US is correlated

with the total NIH budget, but the total NIH budget should not affect the decisions of other

funders directly. In this specification, the coefficient on US outlays is -0.2 (Table A.9), which

is comparable to results of the main analysis.

Third, we drop the scientific knowledge control variable, because our measure (number

of scientific publications to date) might be simultaneously determined by funding. With this

omission, the US outlays coefficient was slightly smaller but qualitatively similar: -0.26 with

the scientific knowledge control variable compared to -0.18 without it (Table A.10).

Fourth, we incorporate an alternative measure of disease burden. Recall that DALYs are

available from only 2000 and 2012, and we linearly interpolate DALY values for the other
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years. Annual mortality data are available. The results are largely unchanged (Table A.11)

when using mortality rather than DALYs as a measure of disease burden.

Finally, we replace the 1-year lag for US outlays with a 2-year lag, in case it takes more

time for non-US funders to observe a change in US outlays and implement a response. With

a longer lag, the coefficient on US outlays was smaller in magnitude than that of the 1-year

lag and not statistically significant (Table A.12).

6.4. Discussion

What is the economic magnitude of the strategic response by non-US funders to American

investment in medical research? Based on the US share of outlays (about one half) and the

estimated elasticities from the regressions (-0.2 to -0.3), our results suggest that if the US

increases outlays by one dollar for a disease, then the net outlay will be around $0.70 to

$0.80.

Regardless of the explanation for the response – i.e. whether free riding, crowding out,

or optimal reallocation by non-US funders – this result has implications for estimating the

impact of US funding. Demonstrating that basic research has positive, measurable effects

is important for sustaining government funding. Indeed, the NIH website emphasizes its

impact on health, society, and the scientific community.12 A large literature in economics

estimates the effect of NIH funding on the production of scientific papers and development

of new drugs. In general, if the response of non-US funders is ignored, then the funding is

measured incorrectly. This is likely to bias downward estimates of NIH impact.

7. Conclusions

Governments and foundations advance science by funding research and then sharing the

results with the public. Funding of medical research may exhibit free riding or crowding out,

particularly among the high-income countries that are capable of financing it. In our sample,

the US government provides more than half of global government and foundation funding for

research on infectious and parasitic diseases (Table 2). Also, US medical research spending

as a share of GDP is triple that of all other high-income countries except the UK (Figure

1). In 2003, the Commissioner of the US Food & Drug Administration noted the disparity

in medical research funding between the US and other high-income countries as well as its

implications:

12For example, see https://www.nih.gov/about-nih/what-we-do/impact-nih-research
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“Our governments need to start by sharing the burden of the increasingly complex

basic science that goes into the development of new drugs and biologics. In the

United States, we’ve responded to the new opportunities that exist in the lab, by

doubling our NIH budget to over $27 billion. As a share of GDP, this is about

four times as much as European Union countries spend. But on an interconnected

planet, all of this spending turns into biomedical knowledge that is transmitted

worldwide for the good of public health worldwide. If other developed countries

contributed to this worldwide effort in proportion to their GDP, we would build

the foundations for better treatments much faster” (McClellan, 2003).

We document how governments respond to other funders in supporting medical research.

First, we show a negative correlation between outlays for a disease by the US government

and outlays by other governments, NGOs, and foundations in the following year, while

accounting for the endogeneity of US outlays. We also find that in Latin America and the

Caribbean, HIV/AIDS imposed the greatest disease burden, but received less in total funding

outlays than diseases like Chagas and dengue. Indeed, the government of Brazil spent less

on HIV/AIDS research than on Chagas and dengue research, even though Brazil’s disease

burden from HIV/AIDS was 100 times greater than the burden from Chagas and dengue

(Table 1). A typical model of funding allocation that ignores the role of a dominant funder

like the NIH would have difficulty explaining these patterns.

We focus on infectious and parasitic diseases in this paper, in part because of the avail-

ability of detailed data. However, our results might hold for other diseases. In 2014, the NIH

budget for all diseases was more than 12 times greater than its UK equivalent, the Medical

Research Council.13 This ratio is similar to that observed for our subset of diseases (Table

2). In future research, it would be interesting to examine whether the results change if we

examine a disease that burdens rich and poor alike, such as cancer or diabetes.

We find a negative relationship in outlays across funders, but the magnitude is less than

one, meaning that other governments reduce outlays by less than one dollar when the US

increases outlays by one dollar. This finding is consistent with our model, which predicts

that the relationship will be less than one-to-one when there are differences in budgets across

funders. Furthermore, funders may have other objectives that we do not consider explicitly,

including a desire to fund research at favored institutions (Hegde and Mowery, 2008; Hegde,

13The US NIH budget in fiscal years 2014 and 2015 was approximately $30 billion while the UK MRC
budget in 2014-15 was less than £1 billion.
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2009) or to show progress fighting a disease. Also, there might be other frictions that mute

awareness or action on funding changes.

If we assume that all high-income countries have similar research productivity and assess-

ments of the value of curing diseases, we should expect roughly similar per-capita spending

across countries. However, the US government provides more than half of global govern-

ment and foundation funding for research on the 15 infectious and parasitic diseases in our

analysis. Furthermore, US medical research spending as a share of GDP is triple all other

high-income countries, other than the UK. This evidence is consistent with free riding. While

much of our evidence is consistent with free riding, the regression results are also consistent

with optimal reallocation. Indeed, according to a program officer of the Burroughs Wellcome

Fund, “We avoid funding areas that the federal government is funding in order to focus on

the underserved. This is how many of our philanthropic peers operate. For example, when

the NIH developed its translational science programs, we retired ours.” Likewise, asked

about the objectives of the Gates Foundation, an employee wrote, “the primary driver is

perceived neglect and opportunity for impact in a disease area which brings together both

health impact and other donor support.” 14 The Congressionally Directed Medical Research

Programs Review Process in the US is tasked with identifying and avoiding duplicative re-

search funding, but focuses primarily on avoiding overlap across US government agencies

and with NGOs; in fact, a recent evaluation of this process makes no mention of non-US

funding (National Academies of Sciences, Engineering, and Medicine, 2016).

Without a general equilibrium analysis, we cannot determine the extent to which our

results indicate free riding or optimal reallocation. Nevertheless, it is useful to be aware of

how global resources shift when the US changes its medical research funding outlays.

Documenting government responses to changes in medical research funding outlays is

relevant to both research and policy sectors. Scholars should be aware that estimates of the

impact of one additional dollar of NIH funding could underestimate the effect, because the

net increase in funding for that disease will be smaller.

Policy makers should be aware of how governments adjust funding and consider enhancing

international coordination, regardless of whether the negative relationship across funders is

socially optimal. The evidence in this paper suggests that governments should increase

efforts to coordinate on medical R&D funding through organizations such as the World

Health Organization as they do in other areas, including military defense and environmental

14Sources: email correspondence with a Gates Foundation employee on August 8, 2012 and with a Bur-
roughs Wellcome program officer on December 9, 2016.
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regulation.
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Table 1: Summary Statistics: Diseases

Indication

Count of Number of Global USA Goverment Brazil Gov.
Govt. Publications Disease Mean Disease Mean Disease Mean

Agencies to date Burden Outlay Burden Outlay Burden Outlay
(MM) (000) ($MM) (000) ($MM) (000) ($MM)

Infectious Disease
Dengue 63 6 1007 83 0 53 4 7
HIV/AIDS 97 74 101632 1124 494 840 838 0.8
Leprosy 17 11 219 10 0 5 1 1
Meningitis 29 7 41693 41 2 8 118 0.5
Trachoma 6 11 433 5 0 4 62 0
Tuberculosis 121 72 60296 410 32 180 326 1
Parasitic Disease
Chagas disease 37 8 571 18 0 12 3 1
Hookworm disease 5 1 3469 9 0 2 15 0
Leishmaniasis 57 13 4986 48 0 22 37 2
Lymphatic filariasis 15 9 2534 13 0 5 17 0
Malaria 121 36 78236 458 46 174 130 2
Onchocerciasis 4 2 590 7 0 2 2 0
Schistosomiasis 19 12 3137 23 0 15 181 1
Trichuriasis 2 1 696 1 0 0.5 0.4 0
Trypanosomiasis 26 3 3741 41 1 16 11 0

Note: The disease burden is measured in disability-adjusted life years (DALYs) lost.
Source: Authors’ analysis using data from Policy Cures and the World Health Organization.
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Table 2: Summary Statistics: Funders

Funder Percent
Total Outlays

($MM, 2007-2014)
Infectious Parasitic

Aggregated Government
United States 58.63 8752 1989
United Kingdom 4.72 891 502
France 2.86 557 286
India 1.16 110 102
Australia 1.14 80 130
Germany 1.06 130 64
Canada 0.76 137 1
Netherlands 0.67 99 25
Brazil 0.57 63 41
Sweden 0.48 65 23
31 other governments 0.11 16 5
Government Agencies
National Institutes of Health, USA 50.32 7572 1645
Agency for International Development, USA 3.89 642 70
Department of Defense, USA 3.46 406 227
Department for International Development, UK 2.27 296 120
Medical Reseach Council, UK 2.25 216 196
Institut Pasteur, France 1.07 102 94
National Health and Medical Research Council, Australia 0.93 61 110
Inserm - Institute of Infectious Diseases, France 0.83 107 45
Council of Medical Research, India 0.75 68 69
Centers for Disease Control and Prevention, USA 0.65 91 29
249 other government agencies 0.03 4 1
Non-Governmental Organizations
Bill & Melinda Gates Foundation, USA 20.41 2257 1482
The Wellcome Trust, UK 3.52 273 372
UBS Optimus Foundation, Switzerland 0.06 7 4
Fundacio La Caixa, Spain 0.06 7 4
Starr Foundation, USA 0.06 11 0
Global Alliance for Vaccines and Immunizations, Switzerland 0.05 8 0
ExxonMobil Foundation, USA 0.04 1 7
amfAR, The Foundation for AIDS Research, USA 0.03 6 0
Global Fund to Fight AIDS, TB and Malaria, Switzerland 0.03 4 2
OPEC Foundation for International Development, Austria 0.03 5 0
129 other non-governmental organizations 0.003 0.3 0.2
Source: Authors’ analysis using data from Policy Cures.
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Table 3: Summary Statistics: Units of Observation

Unit of Observation
Variable Mean

Std
(observations) Dev
Disease, Funder, Year Annual outlay by a funder ($MM) 0.2 3
(47760) Local disease burden (000) 166 1093

Local disease burden, deaths (000) 3 28
Country, Year

GDP per capita ($) 29764 22768
(328)
Disease, Year Annual US outlays ($MM) 88 211
(120) Number of publications to date (MM) 18 23

Disease burden in poor countries (000) 12862 21043
Disease burden in poor countries, deaths (000) 233 414
Number of treatments launched since 1987 2 5

Year Lag research universities per Congressional
3.7 0.1

(8) appropriations member
NIH budget ($BN) 30 617

Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Table 4: The dependent variable is the log of outlays by a government agency for a disease in a year.

Instrumental Variables
OLS First Stage Second Stage

Lag log annual US outlays 0.095 -0.264
(0.013) (0.080)

Log local disease burden 0.038 0.110 0.076
(0.037) (0.008) (0.038)

Log burden in poor countries 0.116 0.155 0.171
(0.019) (0.002) (0.021)

Infectious except HIV indicator 0.002 -0.560 -0.202
(0.052) (0.003) (0.068)

HIV indicator -0.076 1.591 0.494
(0.198) (0.011) (0.232)

Log number of publications to date 0.281 1.100 0.679
(0.037) (0.004) (0.097)

Lag log GDP per capita -0.549 1.017 -0.228
(0.166) (0.046) (0.155)

Lag research universities per Congressional appropriations member 2.561
(0.029)

Agency fixed effect Yes Yes Yes
Observations 27195 27195 27195

Standard errors in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Table 5: The dependent variable is the log of outlays by a funder (foundation or government agency) for a
disease in a year.

Instrumental Variables
OLS First Stage Second Stage

Lag log annual US outlays 0.072 -0.189
(0.010) (0.058)

Log local burden 0.060 0.142 0.096
(0.031) (0.008) (0.032)

Log burden in poor countries 0.087 0.147 0.125
(0.015) (0.002) (0.016)

Infectious except HIV indicator 0.008 -0.556 -0.139
(0.043) (0.003) (0.056)

HIV indicator -0.055 1.503 0.335
(0.157) (0.016) (0.180)

Log number of publications to date 0.220 1.087 0.506
(0.027) (0.004) (0.070)

Lag log GDP per capita -0.469 1.048 -0.257
(0.145) (0.046) (0.134)

Lag research universities per Congressional appropriations member 2.612
(0.022)

Funder fixed effect Yes Yes Yes
Observations 41790 41790 41790

Standard errors in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Table 6: The dependent variable is the log of outlays by a government agency for a disease in a year. This
specification includes the interaction term between US outlay and local disease burden.

Instrumental Variables
OLS First Stage 1 First Stage 2 Second Stage

Lag log annual US outlays 0.087 0.055
(0.017) (0.057)

Log local disease burden -0.132 1.788 14.695 6.325
(0.245) (0.101) (0.170) (1.674)

Log local disease burden x Lag log annual US outlays 0.010 -0.351
(0.015) (0.094)

Log burden in poor countries 0.115 0.154 0.191 0.188
(0.019) (0.002) (0.032) (0.025)

Infectious except HIV indicator 0.007 -0.562 -0.947 -0.357
(0.053) (0.003) (0.075) (0.096)

HIV indicator -0.144 1.589 8.377 2.928
(0.254) (0.011) (0.425) (0.783)

Log number of publications to date 0.277 1.099 1.189 0.745
(0.037) (0.004) (0.118) (0.110)

Lag log GDP per capita -0.564 1.111 2.206 0.285
(0.169) (0.047) (0.155) (0.229)

Lag research universities per Congressional appropriations member 3.126 1.252
(0.034) (0.099)

Log local burden x Lag research universities per -0.450 0.856
Congressional appropriations member (0.025) (0.040)
Agency fixed effect Yes Yes Yes Yes
Observations 27195 27195 27195 27195

Standard errors are in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Table 7: The dependent variable is an indicator variable for whether funding by a government agency is
positive (rather than a measure of the magnitude of the funding).

Instrumental Variables
OLS First Stage Second Stage

Lag log annual US outlays 0.007 -0.023
(0.001) (0.007)

Log local disease burden 0.003 0.110 0.006
(0.003) (0.008) (0.003)

Log burden in poor countries 0.009 0.155 0.013
(0.001) (0.002) (0.002)

Infectious except HIV indicator -0.000 -0.560 -0.018
(0.004) (0.003) (0.006)

HIV indicator -0.014 1.591 0.034
(0.014) (0.011) (0.018)

Log number of publications to date 0.021 1.100 0.056
(0.003) (0.004) (0.008)

Lag log GDP per capita -0.044 1.017 -0.016
(0.014) (0.046) (0.013)

Lag research universities per Congressional appropriations member 2.561
(0.029)

Agency fixed effect Yes Yes Yes
Observations 27195 27195 27195

Standard errors are in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Figure 1: Percentage of national income for medical research on 15 infectious and parasitic diseases.
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Source: Authors’ analysis using data from Policy Cures and the World Bank.

31



Figure 2: The magnitude of US outlays appears to depend in part on representation of research-intensive
universities on US Congressional appropriations committees.
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Appendix A. Robustness Checks

Table A.8: The dependent variable is the log of outlays by a government agency for a disease in a year. This
specification includes a new variable: the number of existing treatments.

Instrumental Variables
OLS First Stage Second Stage

Lag log annual US outlays 0.089 -0.369
(0.012) (0.142)

Log local disease burden 0.013 0.081 0.050
(0.039) (0.007) (0.040)

Log burden in poor countries 0.111 0.147 0.177
(0.019) (0.001) (0.029)

Infectious except HIV indicator 0.125 -0.417 -0.071
(0.048) (0.003) (0.074)

HIV indicator -1.268 0.227 -1.162
(0.358) (0.009) (0.357)

Log number of publications to date 0.209 1.012 0.678
(0.033) (0.003) (0.146)

Lag log GDP per capita -0.571 0.986 -0.175
(0.166) (0.045) (0.210)

Number of treatments launched since 1987 0.085 0.128 0.108
(0.021) (0.001) (0.025)

Lag research universities per Congressional appropriations member 2.568
(0.028)

Agency fixed effect Yes Yes Yes
Observations 27195 27195 27195

Standard errors in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Table A.9: The dependent variable is the log of outlays by a government agency for a disease in a year. This
specification includes a different instrumental variable: the NIH budget (net of funding for the disease in
question).

Instrumental Variables
OLS First Stage Second Stage

Lag log annual US outlays 0.095 -0.179
(0.013) (0.064)

Log local disease burden 0.038 0.110 0.067
(0.037) (0.008) (0.038)

Log burden in poor countries 0.116 0.155 0.158
(0.019) (0.001) (0.021)

Infectious except HIV indicator 0.002 -0.559 -0.153
(0.052) (0.003) (0.062)

HIV indicator -0.076 1.590 0.358
(0.198) (0.011) (0.222)

Log number of publications to date 0.281 1.098 0.584
(0.037) (0.004) (0.081)

Lag log GDP per capita -0.549 0.530 -0.304
(0.166) (0.031) (0.167)

Lag log NIH budget 12.666
(0.085)

Agency fixed effect Yes Yes Yes
Observations 27195 27195 27195

Standard errors are in parentheses and are clustered at the agency level.

Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World

Health Organization.
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Table A.10: The dependent variable is the log of outlays by a government agency for a disease in a year.
This specification does not include the number of scientific publications as a control variable.

Instrumental Variables
OLS First Stage Second Stage

Lag log annual US outlays 0.149 -0.182
(0.017) (0.070)

Log local burden 0.076 0.333 0.187
(0.037) (0.028) (0.044)

Log burden in poor countries 0.153 0.378 0.277
(0.021) (0.006) (0.032)

Infectious except HIV indicator 0.212 0.332 0.321
(0.053) (0.011) (0.058)

HIV indicator -0.057 2.118 0.644
(0.197) (0.048) (0.241)

Lag log GDP per capita -0.504 1.504 -0.051
(0.166) (0.061) (0.159)

Lag research universities per Congressional appropriations member 2.955
(0.043)

Agency fixed effect Yes Yes Yes
Observations 27195 27195 27195

Standard errors are in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Table A.11: The dependent variable is the log of outlays by a government agency for a disease in a year.
This specification measures disease burden by deaths instead of DALYs.

Instrumental Variables
OLS First Stage Second Stage

Lag log annual US outlays 0.049 -0.237
(0.009) (0.074)

Log local disease burden, deaths 0.095 -0.067 0.076
(0.036) (0.005) (0.036)

Log burden in poor countries, deaths 0.036 0.248 0.106
(0.015) (0.001) (0.022)

Infectious except HIV indicator -0.240 -0.447 -0.370
(0.076) (0.008) (0.083)

HIV indicator 0.060 1.916 0.604
(0.220) (0.012) (0.250)

Log number of publications to date 0.278 0.606 0.454
(0.036) (0.001) (0.056)

Lag log GDP per capita -0.483 1.262 -0.160
(0.163) (0.052) (0.156)

Lag research universities per Congressional appropriations member 2.749
(0.035)

Agency fixed effect Yes Yes Yes
Observations 27195 27195 27195

Standard errors are in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Table A.12: The dependent variable is the log of outlays by a government agency for a disease in a year.
The specification uses 2-year lagged, rather than 1-year lagged, outlays from the US government.

Instrumental Variables
OLS First Stage Second Stage

2-year-lag log annual US outlays 0.094 -0.062
(0.013) (0.077)

Log local burden 0.027 0.109 0.044
(0.036) (0.009) (0.037)

Log burden in poor countries 0.109 0.129 0.129
(0.019) (0.002) (0.023)

Infectious except HIV indicator -0.011 -0.639 -0.112
(0.053) (0.003) (0.067)

HIV indicator -0.072 1.669 0.188
(0.197) (0.012) (0.231)

Log number of publications to date 0.295 1.143 0.475
(0.038) (0.005) (0.092)

Lag log GDP per capita -0.870 -0.056 -0.723
(0.207) (0.110) (0.224)

Lag research universities per Congressional appropriations member 2.553
(0.057)

Agency fixed effect Yes Yes Yes
Observations 23310 23310 23310

Standard errors are in parentheses and are clustered at the agency level.
Source: Authors’ analysis using data from Policy Cures, PubMed, the World Bank, and the World
Health Organization.
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Appendix B. Theory

Consider a simple version of the model with two funders, i and j, two diseases, a and

b, and an outside option of , which is specific to a funder. Assume two stages. In stage

one, funder i distributes funding across diseases based on the burden of disease that can

be alleviated B and scientific knowledge S, while ignoring outlays from the fringe funder

j. In stage two, funder j distributes funding according to its local disease burden, scientific

knowledge, and the funding from funder i.

The dominant funder chooses outlays without regard to outlays by the fringe funder.

The dominant funder model seems appropriate in our context for two reasons. First, the

US government accounts for the majority of global funding for 15 infectious and parasitic

diseases in our analysis, while the median funder in our sample accounts for less than 1 per-

cent of overall funding (Table 2). The combination of NIH and Gates Foundation accounts

for 70 percent of funding. Second, we could find no evidence that the NIH or other govern-

ment agencies factor in the behavior of non-US funders. Consistent with our model, NIH

leaders quoted in the text described funding priorities based on disease burden and scientific

knowledge without mention of other funders (Rockey and Wolinetz, 2015). In contrast, other

funders often mention that they are filling perceived gaps. Recall the quote from a program

officer of the Burroughs Wellcome Fund who described avoiding funding of areas that the

US government funds.

Following the innovation economics literature, we assume the production function of

treatment, g(
∑
f

xfd , Sd) = Sd(1 − e
−

∑
f

xf
d

) (Loury, 1979; Reinganum, 1982). Also, we assume

h(of ) = 1 − e−of , but our results are robust to other functional forms of h(of ). Under these

assumptions, we can rewrite the objective function of funder i (Equation 1) as

max
xi
d

BaSa(1 − e−xi
a) +BbSb(1 − e−xi

b) + (1 − e−oi)

s.t. : xia + xib + oi = Y i,

(B.1)

The optimal funding distribution for funder i is summarized by three equations:

xi∗a =
Y i + 2 log(BaSa) − log(BbSb)

3
(B.2)

xi∗b =
Y i − log(BaSa) + 2 log(BbSb)

3
(B.3)
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oi∗ =
Y i − log(BaSa) − log(BbSb)

3
(B.4)

It is straightforward to show that

∂xi∗a
∂Ba

=
2

3Ba

> 0

∂xi∗a
∂Sa

=
2

3Sa

> 0,

(B.5)

which suggests that the dominant funder i provides greater outlays for diseases with higher

burdens and/or diseases with higher scientific knowledge.

Now we solve for the optimal outlays by the fringe funder j. The objective function for

the fringe funder j, when funder j considers local disease burden only, is:

max
xj
d

Bj
aSa(1 − e−xi∗

a −xj
a) +Bj

bSb(1 − e−xi∗
b −xj

b) + (1 − e−oi)

s.t. : xja + xjb + oj = Y j,

(B.6)

The optimal outlays by funder j, given the funding from funder i, are:

xj∗a =
Y j − 2xi∗a + xj∗b + 2 log(Bj

aSa) − log(Bj
bSb)

3
(B.7)

xj∗b =
Y j − 2xi∗b + xi∗a − log(Bj

aSa) + 2 log(Bj
bSb)

3
(B.8)

oj∗ =
Y j + xi∗b + xi∗a + log(Bj

aSa) + log(Bj
bSb)

3
(B.9)

Now we consider how the fringe funder j responds to changes in outlays by the dominant

funder i.

∂xj∗a
∂xi∗a

=
∂xj∗b
∂xi∗b

= −2

3
< 0 (B.10)

and

∂xj∗a
∂xi∗b

=
∂xj∗b
∂xi∗a

=
1

3
> 0 (B.11)

Thus, greater outlays for a disease by the dominant funder will reduce outlays for the

disease by the fringe funder (Hypothesis 2) and increase outlays for a different disease by
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the fringe funder (Hypothesis 3).

In addition, we have

∂xj∗a + xj∗b
∂xi∗b

=
∂xj∗a + xj∗b

∂xi∗a
= −1

3
< 0. (B.12)

In other words, increased outlays by the dominant funder would induce the fringe funder

to invest less in global diseases overall (Hypothesis 3).

Finally, we briefly discuss how exogenous shocks to disease burden, scientific knowledge,

and the budget of funders affect the funding decision of funder f , and explain the importance

of using instrumental variables for identification with a simple example. We start with disease

burden and scientific foundation. As in equation B.12, we have

∂xj∗a
∂Bj

a

=
2

3Bj
a

− 5

9Ba

> 0

∂xj∗a
∂Sj

a

=
1

9Sa

> 0,

(B.13)

which suggests that like the dominant funder i, the fringe funder j provides more funding

for disease with a greater burden and/or scientific knowledge (Hypothesis 1).

Next we examine how the funding support from funder j responds to a positive shock to

the budget of funder i. From equation B.7 and B.8 we have:

∂xj∗a
∂Y i

= −2
∂xi∗a
∂Y i

+
∂xib
∂Y i

= −1

3
< 0

∂xj∗b
∂Y i

= −2
∂xi∗b
∂Y i

+
∂xia
∂Y i

= −1

3
< 0.

(B.14)

In other words, a positive shock to the budget of funder i would induce lower funding

support for both disease a and b from funder j through increasing funding support from

funder i itself.

Finally, we show why we need an instrumental variable for identification. Consider a

global economic shock that increases the budget of both funder i and funder j. For simplicity,

we assume that the budget of funder i increases one unit, and the budget of funder j increases

two units. In this case, the overall changes in xi∗a and xi∗b are

∂xi∗a
∂Y i

=
1

3
> 0

∂xi∗b
∂Y i

=
1

3
> 0.

(B.15)
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Accordingly, the overall changes in xj∗a and xj∗b are

∂xj∗a
∂Y j

+
∂xj∗a
∂Y i

=
2

3
− 1

3
=

1

3
> 0

∂xj∗b
∂Y j

+
∂xj∗a
∂Y i

=
2

3
− 1

3
=

1

3
> 0.

(B.16)

Thus, the shock increases funding support for disease a and b globally. As a result, xi∗a

and xj∗a (xi∗b and xj∗b ) would be positively correlated in the data, contrary to the theoretical

prediction, as displayed in equation B.10. Hence, we need an instrumental variable that

affects the outlays of only one funder.
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