

Impact of later retirement on mortality Evidence from French pension reform

Antoine Bozio¹, Clémentine Garrouste², Elsa Perdrix¹

¹PSE and IPP; ²Université Paris-Dauphine, PSL Research University, LEDa-LEGOS;

Journée de la Chaire Santé – 30 mars 2018 Université Paris-Dauphine

Motivation

Context

- Demographic ageing
- Financial sustainability of pension systems

Possible channels

- Later retirement increases health
- Later retirement decreases health

Motivation

Two main issues

- Academic issue: link between past career and health
 - Reverse causality issue
- Public policies issues: impact of pension system reforms
 - Acceptability of such reforms
 - Spill effect

Literature

- Large range of health outcomes:
 - self-reported health Shai, 2018; Eibich, 2015; Coe and Zamarro, 2011; Coe and Lindeboom, 2008; Neumann, 2008
 - mental health Mazonna and Peracchi, 2017; Bingley and Martinello, 2013; Bonsang et al., 2012; De Grip et al., 2012; Coe and Zamarro, 2011; Rohwedder and Willis, 2010
 - physical health Neumann, 2008; Dave et al., 2008; Behncke, 2012
 - health care expenditures Shai, 2018; Hagen, 2017; Caroli et al., 2016; Eibich, 2015
 - health related-behaviors Godard, 2016; Eibich, 2015; Insler, 2014
- Choice to focus on mortality
 - Consequences of the whole past health
 - Comparability

Literature

Correlation between early retirement and mortality

- Quaade et al. (2002): positive association
- Kuhn et al. (2010): early retirement increases the chance of premature death

Correlation between later retirement and mortality

- Bamia et al. (2007): an increase in retirement age is associated with a decrease in mortality
- Tsai et al. (2005): no differences between those who retire at 60 and 65

 \Rightarrow Selection bias

Literature

• Causal impact of retirement on mortality

- Hernaes et al. (2013): early retirement does not change mortality in Norway
- Bloemen et al. (2017): early retirement decreases the probability of dying in Netherlands
- Hagen (2017): later retirement does not change mortality in Sweden
- Fitzpatrick and Moore (2018): a two percent increase in male mortality after age 62 (RDD on SS threshold) in the US

This paper

Objective

- Estimate the causal effect of later retirement on mortality
 - 1st stage: causal effect of 1993 pension reform on later retirement age
 - 2nd stage: effect of later retirement on mortality

Main results

- The 1993 pension reform has a strong impact on claiming age and can be used as IV
- 2 No significant impact of later retirement on mortality

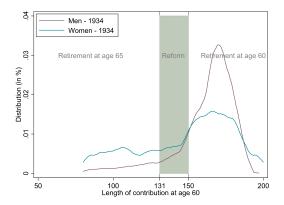
Outline of the presentation

8/31

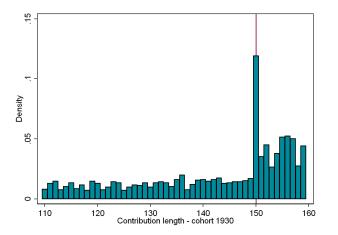
2) Data

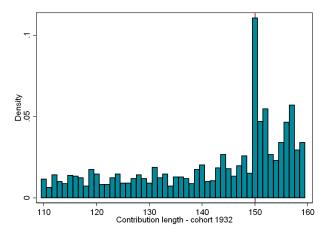
3 Empirical strategy

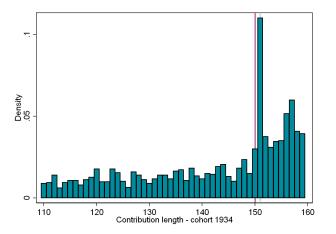
French pension system

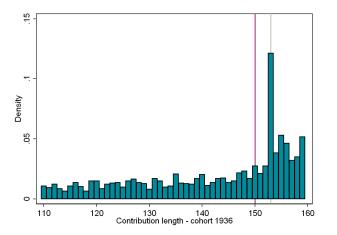

Before the reform, retirement with full replacement rate :

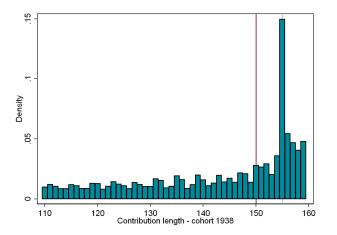
- 1. Be 60 or older and contribute 150 quarters
- 2. Be 65 or older
- After the 1993 reform, condition 1. change:

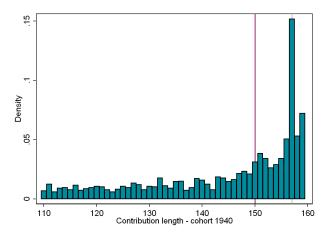

Birth year	Nb of contr. quarters
1933 and before	150
1934	151
1935	152
1936	153
1942	159
1943 and after	160


Figure 1: Distribution of contribution length at age 60







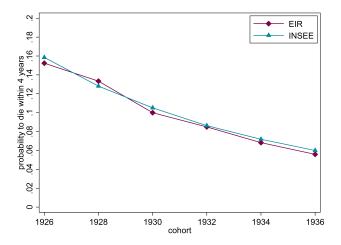


Impact of the 1993 pension reform ipp Politiques Publiques Dubliques Publiques Publiqu

Outline

French administrative data on pension benefit

EIR: échantillon interrégime des retraités


- Waves every four years (2004, 2008, 2012)
- Include all retirees born in early october, all even years from 1906 to 1978
- Include information relevant for pension benefit computation (reference wage, contribution length, replacement rate, retirement age, claiming age)
- Information about death (dummy for being death in each wave, month and year of death)
- Characteristics of EIR are similar to the national population. Comparison of death: EIR and INSEE

Data

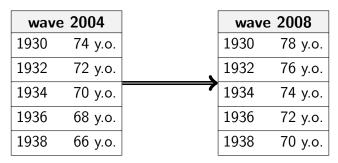
French administrative data on pension benefit

Figure 3: Death probability within 4 years - EIR and INSEE

Data Sample

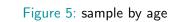
sample by cohort	sample by age
Wage earne	rs in the private sector

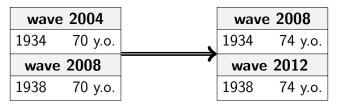
Have contributed at age 60 between 80 and 180 quarters


Benefit from a normal pension (ie. no disability pension)

born between 1930 and 1938born in 1934 and 1938Alive and retired in 2004Alive and retired at age 70Death probability in 2008 and 2012Death at age 74N = 19,962N = 9,588

Data sample




Figure 4: sample by cohort

Data sample

Data

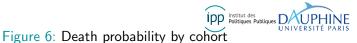
Descriptive statistics

Compare to the national population, our sample is composed by relatively:

- Less women
- More farmers and executives
- Individuals in better health

Table 1:	Descriptive	statistics
----------	-------------	------------

	our sample	EIR 2004
Women	40.47%	49.64 %
Farmers	14.21%	10.85 %
Executives	3.47%	2.10%
Death	6.28%	6.57%



Descriptive statistics

Table 2: Death probability by cohort

Birth		death	n proba.	between 2004 and 2008
	Total	Our s	sample	National statistics
year		Ν	%	% nat.
1930	3851	354	9.19	10.51
1932	3576	308	7.93	8.62
1934	3682	247	6.29	7.18
1936	3839	216	5.33	6.00
1938	6771	307	4.34	5.02
Total	22797	1432	6.28	

90. probability to die .04 0.0235[|] 0.0185 age

Variables of interest

Contribution length at claiming age (Age_{liq}):

• D_{lig}

Data

Contribution length at age 60:

•
$$D_{60} = D_{liq} - 4(Age_{liq} - 60)$$

Variation in contribution length due to the reform:

•
$$Var_{rcl} = (RCL_{c_i} - D_{60}) - (150 - D_{60})$$

Detail

2 Data

Empirical strategy 2SLS regression

- Identification strategy: Variation of required contribution length by cohort due to the 1993 reform
- 1st stage of 2SLS:

$$Ret_i = \alpha_1 + \beta_1 Var_{rcl_i} + \sum_g \gamma_{1,g} \mathbb{1}_{\{yob_i = g\}} + \sum_t \delta_{1,t} \mathbb{1}_{\{D_{60_i} = t\}} + \zeta_1 X_i + \varepsilon_1$$

with:

- Ret_i, claiming age (in quarter) of individual i
- Var_{rcli}, quarter of contribution's variation due to the reform
- $1_{\{yob_i=g\}}$, dummies for cohort
- $\mathbb{1}_{\{D_{60}=t\}}$, dummies for the contribution length at age 60
- X_i, control variables (sex, marital status, wage, executive, and farmer)

Empirical strategy 2SLS regression

• 2nd stage of 2SLS:

$$q\mathbf{4}_i = \alpha_2 + \beta_2 \hat{Ret}_i + \zeta_2 Xi + \varepsilon_2$$

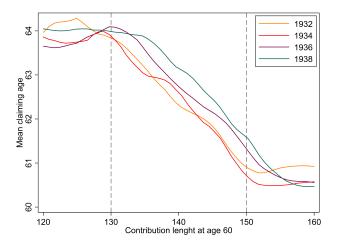
with:

- q4_i, Dummy=1 if individual *i* dies within four years
- Ret_i, claiming age (in quarter) of individual i
- X_i, control variables (cohort, sex, D₆₀, marital status, wage, executive and farmer)
- Alternative specification:

$$q8_i = \alpha_3 + \beta_3 \hat{Ret}_i + \zeta_3 Xi + \varepsilon_3$$

with $q8_i$, Dummy=1 if individual *i* dies within eight years

2 Data



Reform's effect on claiming age

Results

Figure 7: Mean claiming age per contribution length at age 60

Reform's effect on claiming age

Table 3: Effect of the reform on claiming age (first stage)

	All	Men	Women	
Sample by	cohort			
Reform	0.729***	0.856***	0.516***	
	(0.0549)	(0.0637)	(0.0969)	
Ν	19962	11999	7963	
Sample by age				
Reform	0.823***	0.973***	0.572***	
	(0.0807)	(0.0918)	(0.146)	
N	9588	5846	3742	

Control for: sex, cohort, executive, farmer, wage, marital status and contribution length at age 60. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Results

Effect of delaying retirement on mortality

 Table 4: Effect of later retirement on mortality within 4 years
 (second stage of the 2SLS)

 Alternative specification

	Total	Men	Women			
Sample by co	Sample by cohort					
Claiming age	0.0070**	0.0056	0.0076			
	(0.0031)	(0.0038)	(0.0057)			
Ν	19962	11999	7963			
Sample by age						
Claiming age	0.0042	0.0060	0.0005			
	(0.0040)	(0.0050)	(0.0074)			
Ν	9588	5846	3742			

Control for: sex, cohort, executive, farmer, wage, marital status and contribution length at age 60. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 5: Effect of the reform on mortality within 4 years

	Total	Men	Women			
Sample by co	Sample by cohort					
Reform	0.0051**	0.0048	0.0039			
	(0.0022)	(0.0033)	(0.0028)			
Ν	19962	11999	7963			
Sample by age						
Reform	0.0034	0.0059	0.0003			
	(0.0032)	(0.0049)	(0.0043)			
N	9588	5846	3742			

Control for: sex, cohort, executive, farmer, wage, marital status and contribution length at age 60. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Results

Robustness checks

- Non-significant 0.004 effect when controlling for differential mortality effects
- Control for sample selection effect Robustness checks
- Results are never significant when cohort 1938 is dropped
- Results are virtually unchanged with contribution length at age 60 between 120 and 160 quarters
- CI=[-0.005;0.02]
- Reduced form See RF

• Power analysis

Minimum detectable effect (Duflo, 2006):

$$MDE = (t_{1-k} + t_{\frac{\alpha}{2}}) * \sqrt{\frac{1}{p_T(1-p_T)}} * \sqrt{\frac{\sigma^2}{N}}$$
 (1)

Sample size required for a given MDE:

$$N = \frac{1}{p_T(1-p_T)} * \left(\frac{\sigma * (t_{1-k} + t_{\frac{\alpha}{2}})}{MDE}\right)^2$$
(2)

Other MDE formula) (Graph of

Graph of statistical power

Table 6: MDE considering the sample size

	Sample	Share	Death	Â	MDE
	size	of	proba.		
		treated			
Us	9,588	16.88%	6.09%	0.004	0.02
Bloemen	133,379	82.48%	0.8832%	-0.026	0.001887
Hernaes	148,037	80.00%	5.90%	0.002	0.0043
Hagen	133,026	29.05%	4.30%	0.000283	0.0034

Table 7: Required sample size considering an expected MDE

	MDE	Ν
Our main sample	0.004	200,000
Bloemen et al. (2017) Hernaes et al. (2013) Hagen et al. (2017)	-0.026 0.002 0.000283	703 680,108 16,435,400

Discussion

Conclusion

- Large impact of the 1993 reform on claiming age
- No significant impact on mortality when controlling for differential mortality effects

Limits: selection effects

- Selection of individuals alive at age 70
- Selection of individuals who benefit from a normal pension
- Disentangle income effect and later retirement effect
- The reform does not affect individuals with very long or short career Detail

Futher work

• Use exhaustive data to improve the power of our results

Appendix

Table A1: Detail of EIR cohort by cohort

	octol	ber			EIR		
Cohort	from	to	1997	2001	2004	2008	2012
1930	1	6	Yes	Yes	Yes	Yes	Yes
1932	1	6	Yes	Yes	Yes	Yes	Yes
	1	6	Yes	Yes	Yes	Yes	Yes
1934	7	10) No	Yes	No	Yes	Yes
	11	12	No	Yes	No	No	No
1936	1	6	Yes	Yes	Yes	Yes	Yes
1950	7	10	No	No	No	Yes	Yes
	1	6	Yes	Yes	Yes	Yes	Yes
1938	7	10	No	No	Yes	Yes	Yes
	11	24	No	No	Yes	No	Yes

pension formula:

$$P = au imes PC imes W_{ref}$$

with τ the replacement rate, PC, the proratisation coefficient, and W_{ref} the reference wage **Replacement rate formula (pre-reform)**:

$$\tau = 0.5 - \delta \times max[0; min(4 \times (65 - a); 150 - d)]$$

with a is the claiming age; d the number of quarters contributed; and δ is the minimization coefficient, equal to 1.25 % per missing quarter. Back to presentation

Table A2: Reform impact

Cohort	D ₆₀
1930-32	All
1934	\in [0; 130] \cup [151; $+\infty$ [
1936	\in [0; 130] \cup [153; $+\infty$ [
1938	\in [0; 130] \cup [155; $+\infty$ [
1934	∈ [131; 151[
1936	\in ({131}; {152})
1938	\in ({131}; {153})
1936	\in ({132}; {151})
1938	\in ({132}; {153})
1936	∈ [133; 151[
1938	\in ({133}; {152})
1938	\in ({134}; {151})
1938	∈ [135; 151[
	1930-32 1934 1936 1938 1934 1936 1938 1936 1938 1936 1938 1938

Back to presentation

Table A3: Effect of later retirement on mortality within 4 years (IV – binary model with endogenous explanatory variable)

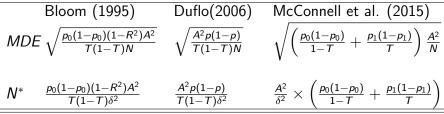
	Total	Men	Women				
Sample by co	hort						
Claiming age	0.0070**	0.0056	0.0076				
	(0.0031)	(0.0038)	(0.0057)				
N	19962	11999	7963				
Sample by ag	Sample by age						
Claiming age	0.0040	0.0068	0.0004				
	(0.0040)	(0.0050)	(0.0090)				
Ν	9588	5846	3742				

Control for: sex, cohort, executive, farmer, wage, marital status and contribution length at age 60. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Back to presentation

			Dep. var	iable: death	from 2004 t	o 2008			
		Total			Men			Women	
Panel	m.e.	s.e.	N	m.e.	s.e.	N	m.e.	s.e.	N
A	0.0109	(0.0085)	4996	0.0098	(0.0118)	2677	0.0111	(0.0113)	2319
В	0.0108	(0.0071)	13518	0.0067	(0.0083)	7993	0.0191	(0.0154)	5525
С	0.0072**	(0.0036)	7136	0.0076	(0.0050)	3888	0.0046	(0.0051)	3248
D	0.0070**	(0.0031)	19962	0.0056	(0.0038)	11999	0.0076	(0.0057)	7963
	Dep. variable: death from 2004 to 2012								
		Total			Men			Women	
Panel	m.e.	s.e.	N	m.e.	s.e.	N	m.e.	s.e.	N
A	0.0118	(0.0123)	4996	0.0105	(0.0170)	2677	0.0136	(0.0174)	2319
В	0.0110	(0.0102)	13518	0.0136	(0.0124)	7993	0.0087	(0.0196)	5525
С	0.0049	(0.0052)	7136	0.0030	(0.0069)	3888	0.0066	(0.0080)	3248
D	0.0035	(0.0043)	19962	0.0026	(0.0053)	11999	0.0028	(0.0081)	7963
					. ,			. ,	
			Dep. va	riable: deat	h within four	years			
		Total			Men			Women	
Panel	m.e.	s.e.	N	m.e.	s.e.	N	m.e.	s.e.	N
E	0.0071	(0.0089)	2450	0.0116	(0.0133)	1322	0.0043	(0.0116)	1128
F	0.0122	(0.0081)	6725	0.0149	(0.0100)	3953	0.0124	(0.0153)	2772
G	0.0055	(0.0054)	3308	0.0110	(0.0076)	1831	-0.0018	(0.0074)	1477
Н	0.0042	(0.0040)	9588	0.0060	(0.0050)	5846	0.0005	(0.0074)	3742

Control for: sex, cohort, executive, farmer, wage, marital status and contribution length at age 60. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Each line presents the coefficient associated with Var_{rcl} (m.e.) for men and women resp. Panel A (resp. B) includes individuals born in 1930, 32, 34, 36 and 38 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters). Panel C (resp. D) includes individuals born in 1930, 32, 34, 36 and 38 who have contributed between 120 and 160 quarters. Panel E (resp. F) includes individuals born in 1932 and 36 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters). Panel E (resp. F) includes individuals born in 1932 and 36 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters). Panel G (resp. H) includes individuals born in 1934 and 38 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters).

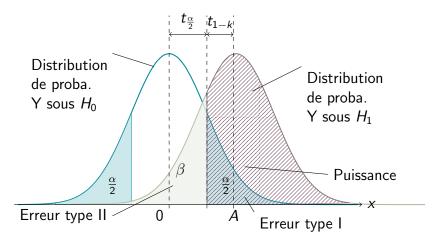


			Dep. varia	able: death	from 2004 to	2008			
		Total			Men			Women	
sample	m.e.	s.e.	N	m.e.	s.e.	N	m.e.	s.e.	N
A	0.0076	(0.0057)	4996	0.0074	(0.0089)	2677	0.0069	(0.0065)	2319
В	0.0074	(0.0047)	13518	0.0059	(0.0072)	7993	0.0085	(0.0057)	5525
С	0.0055**	(0.0027)	7136	0.0065	(0.0042)	3888	0.0030	(0.0033)	3248
D	0.0051**	(0.0022)	19962	0.0048	(0.0033)	11999	0.0039	(0.0028)	7963
		× /						× /	
			Dep. varia	able: death	from 2004 to	2012			
		Total			Men			Women	
sample	m.e.	s.e.	N	m.e.	s.e.	N	m.e.	s.e.	N
A	0.0082	(0.0084)	4996	0.0080	(0.0130)	2677	0.0085	(0.0104)	2319
В	0.0076	(0.0069)	13518	0.0118	(0.0106)	7993	0.0039	(0.0086)	5525
С	0.0038	(0.0040)	7136	0.0025	(0.0059)	3888	0.0043	(0.0051)	3248
D	0.0026	(0.0032)	19962	0.0023	(0.0046)	11999	0.0014	(0.0042)	7963
		. ,			. ,				
			Dep. var	iable: death	n within four	years			
		Total			Men			Women	
sample	m.e.	s.e.	N	m.e.	s.e.	N	m.e.	s.e.	N
E	0.0060	(0.0075)	2450	0.0104	(0.0119)	1322	0.0032	(0.0086)	1128
F	0.0095	(0.0060)	6725	0.0148	(0.0096)	3953	0.0061	(0.0070)	2772
G	0.0044	(0.0043)	3308	0.0098	(0.0067)	1831	-0.0012	(0.0050)	1477
н	0.0034	(0.0032)	9588	0.0059	(0.0049)	5846	0.0003	(0.0043)	3742

Control for: sex, cohort, executive, farmer, wage, marital status and contribution length at age 60. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Each line presents the coefficient associated with Var_{rcl} (m.e.) for men and women resp (linear probability model). Panel A (resp. B) includes individuals born in 1930, 32, 34, 36 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters). Panel C (resp. D) includes individuals born in 1930, 32, 34, 36 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters). Panel C (resp. B) includes individuals born in 1932 and 36 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters). Panel C (resp. H) includes individuals born in 1934 and 38 who have contributed between 120 and 160 quarters (resp. 80 to 180 quarters). Panel C (resp. H) includes individuals born in 1934 and 38 who have contributed between 120 and 160 quarters).

Table A6: Formules MDE et Taille d'échantillon optimale

avec N la taille d'échantillon;


 \textit{N}^* la taille d'échantillon requise pour un coefficient $\delta;$ δ le MDE;

T la proportion de traités;

p La probabilité que l'outcome binaire soit égal à 1 (p = p(Y = 1)) $p_0 = p(Y = 1 | T = 0)$ et $p_1 = p(Y = 1 | T = 1)$; $(1 - R^2)$ obtenu en régressant T sur les covariables. $A = t_{1-k} + t_{\alpha/2}$.

Figure A1: Représentation graphique de la puissance statistique

Table A7: Définition des deux types d'erreur

		Vraie valeur		
		$\beta = 0 \Leftrightarrow$	$\beta \neq 0 \Leftrightarrow$	
		$eta = 0 \Leftrightarrow H_0$ vraie	H ₀ fausse	
estimee β	$egin{array}{rcl} eta &=& 0 &\Leftrightarrow \ H_{0} \ \mathrm{accept\acute{e}e} \end{array}$	ОК	Erreur type II	
	$egin{array}{ccc} eta & eq & 0 & \Leftrightarrow \ H_0 \ \mathrm{rejet\acute{e}e} \end{array}$	Erreur type I	ОК	

• Retour à la présentation